A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows

A fast implicit Newton-Krylov finite volume algorithm has been developed for high-order unstructured steady-state computation of inviscid compressible flows. The matrix-free generalized minimal residual (GMRES) algorithm is used for solving the linear system arising from implicit discretization of the governing equations, avoiding expensive and complex explicit computation of the high-order Jacobian matrix. The solution process has been divided into two phases: start-up and Newton iterations. In the start-up phase an approximate solution with the general characteristics of the steady-state flow is computed by using a defect correction procedure. At the end of the start-up phase, the linearization of the flow field is accurate enough for steady-state solution, and a quasi-Newton method is used, with an infinite time step and very rapid convergence. A proper limiter implementation for efficient convergence of the high-order discretization is discussed and a new formula for limiting the high-order terms of the reconstruction polynomial is introduced. The accuracy, fast convergence and robustness of the proposed high-order unstructured Newton-Krylov solver for different speed regimes is demonstrated for the second, third and fourth-order discretization. The possibility of reducing computational cost required for a given level of accuracy by using high-order discretization is examined.

[1]  T. Barth Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .

[2]  Philip E. Gill,et al.  Practical optimization , 1981 .

[3]  Michael J. Aftosmis,et al.  Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries , 2002 .

[4]  David W. Zingg,et al.  Aerodynamic computations using a higher-order algorithm , 1999 .

[5]  Krzysztof Michalak,et al.  Matrix-Explicit GMRES for a Higher-Order Accurate Inviscid Compressible Flow Solver , 2007 .

[6]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[7]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[8]  Axel Rohde,et al.  EIGENVALUES AND EIGENVECTORS OF THE EULER EQUATIONS IN GENERAL GEOMETRIES , 2001 .

[9]  Timothy J. Barth,et al.  Application of direct solvers to unstructured meshes for the Euler and Navier-Stokes equations using upwind schemes , 1989 .

[10]  Dimitri J. Mavriplis,et al.  On Convergence Acceleration Techniques for Unstructured Meshes , 1998 .

[11]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[12]  D. Gaitonde,et al.  Behavior of linear reconstruction techniques on unstructured meshes , 1995 .

[13]  V. Venkatakrishnan Newton solution of inviscid and viscous problems , 1988 .

[14]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[15]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[16]  V. N. Venkatakrishnan,et al.  Implicit Solvers for Unstructured Meshes , 1993 .

[17]  Laurence B. Wigton,et al.  Application of MACSYMA and Sparse Matrix Technology to Multielement Airfoil Calculations , 1987 .

[18]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[19]  David L. Whitaker,et al.  Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method , 1993 .

[20]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[21]  Edward N. Tinoco,et al.  Thirty Years of Development and Application of CFD at Boeing Commercial Airplanes, Seattle , 2003 .

[22]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[23]  William Gropp,et al.  Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD , 2000, Int. J. High Perform. Comput. Appl..

[24]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[25]  Darren L. de Zeeuw A quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations , 1993 .

[26]  Carl Ollivier-Gooch,et al.  On Preconditioning of Newton-GMRES algorithm for a Higher-Order Accurate Unstructured Solver , 2006 .

[27]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[28]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[29]  Paul D. Orkwis,et al.  Comparison of numerical and analytical Jacobians , 1996 .

[30]  Andreas Haselbacher,et al.  A WENO Reconstruction Algorithim for Unstructured Grids Based on Explicit Stencil Construction , 2005 .

[31]  Michael Van Altena High-order finite-volume discretisations for solving a modified advection-diffusion problem on unstructured triangular meshes , 1999 .

[32]  Carl Ollivier-Gooch,et al.  A High-Order Accurate Unstructured GMRES Algorithm for Inviscid Compressible Flows , 2005 .

[33]  F. Ronald Bailey,et al.  High-End Computing Challenges in Aerospace Design and Engineering , 2006 .

[34]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[35]  Antony Jameson,et al.  Successes and challenges in computational aerodynamics , 1987 .

[36]  David W. Zingg,et al.  Efficient Newton-Krylov Solver for Aerodynamic Computations , 1998 .

[37]  M. Delanaye,et al.  Quadratic-Reconstruction Finite Volume Scheme for Compressible Flows on Unstructured Adaptive Grids , 1997 .

[38]  Stuart E. Rogers,et al.  Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .

[39]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[40]  Moulay D. Tidriri,et al.  Preconditioning Techniques for the Newton-Krylov Solution of Compressible Flows , 1997 .

[41]  C. Ollivier-Gooch Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-Dependent Least-Squares Reconstruction , 1997 .

[42]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[43]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[44]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[45]  D. Zingg,et al.  Fast Newton-Krylov method for unstructured grids , 1998 .

[46]  Carl Ollivier-Gooch,et al.  A High-Order Accurate Unstructured Newton-Krylov Solver for Inviscid Compressible Flows , 2006 .

[47]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[48]  Carl Ollivier-Gooch,et al.  A High-Order Accurate Unstructured GMRES Solver for the Compressible Euler Equations , 2006 .

[49]  Charles Boivin,et al.  Guaranteed‐quality triangular mesh generation for domains with curved boundaries , 2002 .

[50]  V. Venkatakrishnan,et al.  A PERSPECTIVE ON UNSTRUCTURED GRID FLOW SOLVERS , 1995 .

[51]  Jacob K. White,et al.  A Quadratic Basis Function, Quadratic Geometry, High Order Panel Method. , 2006 .

[52]  Philippe R. Spalart,et al.  Topics in Detached-Eddy Simulation , 2006 .

[53]  David W. Zingg,et al.  AN EFFICIENT NEWTON-GMRES SOLVER FOR AERODYNAMIC COMPUTATIONS , 1997 .

[54]  Paul D. Orkwis,et al.  Comparison of Newton's and quasi-Newton's method solvers for the Navier-Stokes equations , 1993 .

[55]  Curtis R. Mitchell,et al.  Practical aspects of spatially high accurate methods , 1992 .

[56]  Andreas Griewank,et al.  Automatic Differentiation of Algorithms: From Simulation to Optimization , 2000, Springer New York.

[57]  H. E. Bailey,et al.  Newton's method applied to finite-difference approximations for the steady-state compressible Navier-Stokes equations , 1991 .

[58]  M. Delanaye,et al.  DEVELOPMENT AND APPLICATION OF QUADRATIC RECONSTRUCTION SCHEMES FOR COMPRESSIBLE FLOWS ON UNSTRUCTURED ADAPTIVE GRIDS , 1997 .

[59]  J. W. Boerstoel,et al.  Test Cases for Inviscid Flow Field Methods. , 1985 .

[60]  David W. Zingg,et al.  Progress in Newton-Krylov methods for aerodynamic calculations , 1997 .

[61]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[62]  Rainald Löhner,et al.  A fast, matrix-free implicit method for compressible flows on unstructured grids , 1998 .

[63]  Carl Ollivier-Gooch,et al.  Effect of Discretization Order on Preconditioning and Convergence of a Higher-Order Unstructured Newton-Krylov Solver for Inviscid Compressible Flows , 2007 .

[64]  R. LeVeque Numerical methods for conservation laws , 1990 .

[65]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[66]  Rosa Maria Spitaleri,et al.  Multiblock multigrid grid generation algorithms: overcoming multigrid anisotropy , 1997 .

[67]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[68]  Sinan Eyi,et al.  Effects of the Jacobian evaluation on Newton's solution of the Euler equations , 2005 .

[69]  Ramesh K. Agarwal,et al.  A COMPACT HIGH-ORDER UNSTRUCTURED GRIDS METHOD FOR THE SOLUTION OF EULER EQUATIONS , 1999 .

[70]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[71]  Curtis R. Mitchell,et al.  Practical aspects of spatially high-order accurate methods , 1993 .

[72]  David W. Zingg,et al.  Higher-order aerodynamic computations on multi-block grids , 2001 .

[73]  David W. Zingg,et al.  A fast solver for the Euler equations on unstructured grids using a Newton-GMRES method , 1997 .

[74]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[75]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[76]  Carl Ollivier-Gooch,et al.  Effect of discretization order on preconditioning and convergence of a high-order unstructured Newton-GMRES solver for the Euler equations , 2008, J. Comput. Phys..

[77]  Carl Ollivier-Gooch,et al.  A High-Order Accurate Unstructured GMRES Solver for Poisson’s Equation , 2003 .

[78]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[79]  Paul Orkwis,et al.  Jacobian update strategies for quadratic and near-quadratic convergence of Newton and Newton-like implicit schemes , 1993 .

[80]  David W. Zingg,et al.  Higher-order spatial discretization for turbulent aerodynamic computations , 2001 .

[81]  T. Barth,et al.  An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation , 1995 .

[82]  S. Forth,et al.  Elimination AD applied to Jacobian assembly for an implicit compressible CFD solver , 2005 .

[83]  M. Delanaye,et al.  Computation of high Reynolds number flows with an implicit quadratic reconstruction scheme on unstructured grids , 1997 .

[84]  David W. Zingg,et al.  Improvements to a Newton-Krylov solver for aerodynamic flows , 1998 .

[85]  Thomas H. Pulliam,et al.  Comparison of Several Spatial Discretizations for the Navier-Stokes Equations , 1999 .

[86]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[87]  Timothy J. Barth,et al.  Analysis of implicit local linearization techniques for upwind and TVD algorithms , 1987 .

[88]  Carl Ollivier-Gooch,et al.  High-order ENO schemes for unstructured meshes based on least-squares reconstruction , 1997 .

[89]  David W. Zingg,et al.  Further Investigation of a Higher-Order Algorithm for Aerodynamic Computations , 2000 .

[90]  David E. Keyes,et al.  Application of Newton-Krylov methodology to a three-dimensional unstructured Euler code , 1995 .

[91]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[92]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[93]  D. Zingg,et al.  A Newton-Krylov Algorithm for the Euler Equations Using Unstructured Grids , 2003 .

[94]  David W. Zingg,et al.  A Three-Dimensional Multi-Block Newton-Krylov Flow Solver for the Euler Equations , 2005 .

[95]  Clinton P. T. Groth,et al.  Assessment of Riemann solvers for unsteady one-dimensional inviscid flows for perfect gases , 1988 .