Accelerating the iterative solution of convection–diffusion problems using singular value decomposition
暂无分享,去创建一个
[1] David Wells,et al. The deal.II Library, Version 8.4 , 2016, J. Num. Math..
[2] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..
[3] Cornelis Vuik,et al. A Comparison of Deflation and the Balancing Preconditioner , 2005, SIAM J. Sci. Comput..
[4] Jinchao Xu,et al. The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .
[5] Paul Fischer,et al. PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .
[6] S. A. Kharchenko,et al. Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..
[7] Eric de Sturler,et al. Recycling BiCG with an Application to Model Reduction , 2010, SIAM J. Sci. Comput..
[8] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[9] Ronald B. Morgan,et al. GMRES WITH DEFLATED , 2008 .
[10] E. Sturler,et al. Nested Krylov methods based on GCR , 1996 .
[11] Oliver G. Ernst,et al. Analysis of acceleration strategies for restarted minimal residual methods , 2000 .
[12] Cornelis Vuik,et al. A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow , 2004, SIAM J. Numer. Anal..
[13] Yousef Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..
[14] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[15] Y. Saad. Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..
[16] Cornelis Vuik,et al. A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..
[17] Mark Embree,et al. The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..
[18] Frédéric Guyomarc'h,et al. An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[19] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .
[20] Daniel Kressner,et al. Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..
[21] Eric de Sturler,et al. Recycling BiCGSTAB with an Application to Parametric Model Order Reduction , 2014, SIAM J. Sci. Comput..
[22] T. Manteuffel,et al. Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .
[23] Elizabeth R. Jessup,et al. A simple strategy for varying the restart parameter in GMRES(m) , 2007 .
[24] Thomas A. Manteuffel,et al. Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..
[25] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[26] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[27] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[28] E. Sturler,et al. Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .
[29] Thomas A. Manteuffel,et al. Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..
[30] Jörg Liesen,et al. A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..
[31] Y. Saad. Numerical Methods for Large Eigenvalue Problems , 2011 .
[32] Gene H. Golub,et al. Matrix computations , 1983 .
[33] Martin H. Gutknecht,et al. Deflated and Augmented Krylov Subspace Methods: A Framework for Deflated BiCG and Related Solvers , 2014, SIAM J. Matrix Anal. Appl..
[34] Prakash Vedula,et al. A framework for large eddy simulation of Burgers turbulence based upon spatial and temporal statistical information , 2015 .
[35] Misha Elena Kilmer,et al. Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..
[36] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[37] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[38] Luc Giraud,et al. Flexible GMRES with Deflated Restarting , 2010, SIAM J. Sci. Comput..
[39] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[40] Sabine Fenstermacher,et al. Numerical Approximation Of Partial Differential Equations , 2016 .
[41] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[42] M. Rozložník,et al. Numerical behaviour of the modified gram-schmidt GMRES implementation , 1997 .
[43] Eric de Sturler,et al. Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver , 2015, J. Comput. Phys..
[44] Wayne Joubert,et al. On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..
[45] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[46] Frédéric Guyomarc'h,et al. A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..
[47] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[48] Zdenek Strakos,et al. Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods , 2001, SIAM J. Sci. Comput..
[49] Emílio C. N. Silva,et al. Recycling Krylov subspaces for efficient large-scale electrical impedance tomography , 2010 .
[50] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[51] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[52] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[53] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[54] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[55] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..