Accelerating the iterative solution of convection–diffusion problems using singular value decomposition

The discretization of convection-diffusion equations by implicit or semi-implicit methods leads to a sequence of linear systems usually solved by iterative linear solvers such as GMRES. Many techniques bearing the name of \emph{recycling Krylov space methods} have been proposed to speed up the convergence rate after restarting, usually based on the selection and retention of some Arnoldi vectors. After providing a unified framework for the description of a broad class of recycling methods and preconditioners, we propose an alternative recycling strategy based on a singular value decomposition selection of previous solutions, and exploit this information in classical and new augmentation and deflation methods. The numerical tests in scalar non-linear convection-diffusion problems are promising for high-order methods.

[1]  David Wells,et al.  The deal.II Library, Version 8.4 , 2016, J. Num. Math..

[2]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..

[3]  Cornelis Vuik,et al.  A Comparison of Deflation and the Balancing Preconditioner , 2005, SIAM J. Sci. Comput..

[4]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[5]  Paul Fischer,et al.  PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .

[6]  S. A. Kharchenko,et al.  Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..

[7]  Eric de Sturler,et al.  Recycling BiCG with an Application to Model Reduction , 2010, SIAM J. Sci. Comput..

[8]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[9]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[10]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[11]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[12]  Cornelis Vuik,et al.  A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow , 2004, SIAM J. Numer. Anal..

[13]  Yousef Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..

[14]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[15]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[16]  Cornelis Vuik,et al.  A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..

[17]  Mark Embree,et al.  The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..

[18]  Frédéric Guyomarc'h,et al.  An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[19]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[20]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[21]  Eric de Sturler,et al.  Recycling BiCGSTAB with an Application to Parametric Model Order Reduction , 2014, SIAM J. Sci. Comput..

[22]  T. Manteuffel,et al.  Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .

[23]  Elizabeth R. Jessup,et al.  A simple strategy for varying the restart parameter in GMRES(m) , 2007 .

[24]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[25]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[26]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[27]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[28]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[29]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[30]  Jörg Liesen,et al.  A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..

[31]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[32]  Gene H. Golub,et al.  Matrix computations , 1983 .

[33]  Martin H. Gutknecht,et al.  Deflated and Augmented Krylov Subspace Methods: A Framework for Deflated BiCG and Related Solvers , 2014, SIAM J. Matrix Anal. Appl..

[34]  Prakash Vedula,et al.  A framework for large eddy simulation of Burgers turbulence based upon spatial and temporal statistical information , 2015 .

[35]  Misha Elena Kilmer,et al.  Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..

[36]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[37]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[38]  Luc Giraud,et al.  Flexible GMRES with Deflated Restarting , 2010, SIAM J. Sci. Comput..

[39]  Miroslav Rozlozník,et al.  Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..

[40]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[41]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[42]  M. Rozložník,et al.  Numerical behaviour of the modified gram-schmidt GMRES implementation , 1997 .

[43]  Eric de Sturler,et al.  Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver , 2015, J. Comput. Phys..

[44]  Wayne Joubert,et al.  On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..

[45]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[46]  Frédéric Guyomarc'h,et al.  A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..

[47]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[48]  Zdenek Strakos,et al.  Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods , 2001, SIAM J. Sci. Comput..

[49]  Emílio C. N. Silva,et al.  Recycling Krylov subspaces for efficient large-scale electrical impedance tomography , 2010 .

[50]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[51]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[52]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[53]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[54]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[55]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..