MAP-Kinase-Driven Hematopoietic Neoplasms: A Decade of Progress in the Molecular Age.

Mutations in members of the mitogen-activated protein kinase (MAPK) pathway are extensively studied in epithelial malignancies, with BRAF mutations being one of the most common alterations activating this pathway. However, BRAF mutations are overall quite rare in hematological malignancies. Studies over the past decade have identified high-frequency BRAF V600E, MAP2K1, and other kinase alterations in two groups of MAPK-driven hematopoietic neoplasms: hairy cell leukemia (HCL) and the systemic histiocytoses. Despite HCL and histiocytoses sharing common molecular alterations, these are phenotypically distinct malignancies that differ in respect to clinical presentation and suspected cell of origin. The purpose of this review is to highlight the molecular advancements over the last decade in the histiocytic neoplasms and HCL and discuss the impact these insights have had on our understanding of the molecular pathophysiology, cellular origins, and therapy of these enigmatic diseases as well as perspectives for future research directions.

[1]  X. Troussard,et al.  Hairy cell leukemia: 2020 update on diagnosis, risk stratification, and treatment , 2019, American journal of hematology.

[2]  M. Ladanyi,et al.  Activating mutations in CSF-1R and additional receptor tyrosine kinases in histiocytic neoplasms , 2019, Nature Medicine.

[3]  M. Landriscina,et al.  BRAF Inhibitors in Thyroid Cancer: Clinical Impact, Mechanisms of Resistance and Future Perspectives , 2019, Cancers.

[4]  Ahmet Dogan,et al.  Efficacy of MEK Inhibition in Patients with Histiocytic Neoplasms , 2019, Nature.

[5]  L. Cascione,et al.  Genome-wide promoter methylation of hairy cell leukemia. , 2019, Blood advances.

[6]  B. Durham Molecular characterization of the histiocytoses: Neoplasia of dendritic cells and macrophages. , 2019, Seminars in cell & developmental biology.

[7]  S. Yuen,et al.  ALK-positive histiocytosis: an expanded clinicopathologic spectrum and frequent presence of KIF5B-ALK fusion , 2018, Modern Pathology.

[8]  K. Hoang-Xuan,et al.  Incidence and risk factors for clinical neurodegenerative Langerhans cell histiocytosis: a longitudinal cohort study , 2018, British journal of haematology.

[9]  Zhiyan Zhan,et al.  A novel fusion gene PLEKHA6‐NTRK3 in langerhans cell histiocytosis , 2018, International journal of cancer.

[10]  K. de Heer,et al.  Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia , 2018, Leukemia.

[11]  W. Wilson,et al.  Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia , 2018, Leukemia.

[12]  E. Jacobsen,et al.  Consensus recommendations for the diagnosis and clinical management of Rosai-Dorfman-Destombes disease. , 2018, Blood.

[13]  F. Jardin,et al.  New generation sequencing of targeted genes in the classical and the variant form of hairy cell leukemia highlights mutations in epigenetic regulation genes , 2018, Oncotarget.

[14]  T. Wróbel,et al.  Response to the Therapy in Hairy Cell Leukemia: Systematic Review and Meta‐Analysis , 2018, Clinical lymphoma, myeloma & leukemia.

[15]  J. Emile,et al.  BRAF V600E mutation detected in a case of Rosai-Dorfman disease , 2018, Haematologica.

[16]  P. Cluzel,et al.  Phenotypes and survival in Erdheim‐Chester disease: Results from a 165‐patient cohort , 2018, American journal of hematology.

[17]  J. Hajdenberg,et al.  Single-agent dabrafenib for BRAFV600E-mutated histiocytosis , 2018, Haematologica.

[18]  H. Li,et al.  MRD-negative complete remission in relapsed refractory hairy cell leukemia with bendamustine and obinutuzumab , 2018, Annals of Hematology.

[19]  O. Abdel-Wahab,et al.  Novel activating BRAF fusion identifies a recurrent alternative mechanism for ERK activation in pediatric Langerhans cell histiocytosis , 2018, Pediatric blood & cancer.

[20]  D. Galanaud,et al.  Efficacy of the MEK inhibitor cobimetinib for wild‐type BRAF Erdheim‐Chester disease , 2018, British journal of haematology.

[21]  M. Rosenblum,et al.  The histopathology of Erdheim–Chester disease: a comprehensive review of a molecularly characterized cohort , 2017, Modern Pathology.

[22]  J. Blay,et al.  Vemurafenib for BRAF V600–Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis: Analysis of Data From the Histology-Independent, Phase 2, Open-label VE-BASKET Study , 2017, JAMA oncology.

[23]  P. Thorner,et al.  BRAF V600E mutation in pediatric intracranial and cranial juvenile xanthogranuloma. , 2017, Human pathology.

[24]  James M. Bogenberger,et al.  Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations. , 2017, Blood.

[25]  Joseph D Khoury,et al.  Mutually exclusive recurrent KRAS and MAP2K1 mutations in Rosai–Dorfman disease , 2017, Modern Pathology.

[26]  A. Vaglio,et al.  Erdheim-Chester disease: the "targeted" revolution. , 2017, Blood.

[27]  K. Hoang-Xuan,et al.  Targeted therapies in 54 patients with Erdheim-Chester disease, including follow-up after interruption (the LOVE study). , 2017, Blood.

[28]  M. Rosenblum,et al.  A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease , 2017, Nature.

[29]  Christophe Béroud,et al.  Exome sequencing identifies recurrent BCOR alterations and the absence of KLF2, TNFAIP3 and MYD88 mutations in splenic diffuse red pulp small B-cell lymphoma , 2017, Haematologica.

[30]  N. McGovern,et al.  Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. , 2017, Blood.

[31]  O. Abdel-Wahab,et al.  Functional evidence for derivation of systemic histiocytic neoplasms from hematopoietic stem/progenitor cells. , 2017, Blood.

[32]  C. Bellanné-Chantelot,et al.  New somatic BRAF splicing mutation in Langerhans cell histiocytosis , 2017, Molecular Cancer.

[33]  P. Stephens,et al.  Real-time genomic profiling of histiocytoses identifies early-kinase domain BRAF alterations while improving treatment outcomes. , 2017, JCI insight.

[34]  F. Ravandi,et al.  How I manage patients with hairy cell leukaemia , 2017, British journal of haematology.

[35]  M. Steurer,et al.  Ibrutinib for relapsed refractory hairy cell leukemia variant , 2017, Leukemia & lymphoma.

[36]  D. Wheeler,et al.  Activating MAPK1 (ERK2) mutation in an aggressive case of disseminated juvenile xanthogranuloma , 2017, Oncotarget.

[37]  A. Wicki,et al.  Trametinib after disease reactivation under dabrafenib in Erdheim-Chester disease with both BRAF and KRAS mutations. , 2017, Blood.

[38]  E. Jaffe,et al.  The clinical spectrum of Erdheim-Chester disease: an observational cohort study. , 2017, Blood advances.

[39]  Jeffrey A Jones,et al.  Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. , 2017, Blood.

[40]  D. Wheeler,et al.  Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. , 2016, Blood.

[41]  B. Falini,et al.  BRAF V600E mutation in hairy cell leukemia: from bench to bedside. , 2016, Blood.

[42]  H. Kantarjian,et al.  Long‐term durable remission by cladribine followed by rituximab in patients with hairy cell leukaemia: update of a phase II trial , 2016, British journal of haematology.

[43]  D. Borys,et al.  Erdheim Chester disease with appendicular skeletal, renal and pleural involvement responding to Zelboraf (BRAF inhibitor) treatment: case report , 2016, Skeletal Radiology.

[44]  A. Fischer,et al.  Revised Classification of Histiocytoses and Neoplasms of the Macrophage-dendritic Cell Lineages Histiocyte and Dendritic Cell Lineages the " L " (langerhans) Group , 2022 .

[45]  M. Kluk,et al.  Rosai–Dorfman Disease Harboring an Activating KRAS K117N Missense Mutation , 2016, Head and Neck Pathology.

[46]  J. Haroche,et al.  Uncommon histiocytic disorders: Rosai-Dorfman, juvenile xanthogranuloma, and Erdheim-Chester disease. , 2015, Hematology. American Society of Hematology. Education Program.

[47]  C. Allen,et al.  Biological and clinical significance of somatic mutations in Langerhans cell histiocytosis and related histiocytic neoplastic disorders. , 2015, Hematology. American Society of Hematology. Education Program.

[48]  D. Catovsky,et al.  Long-term follow-up after purine analogue therapy in hairy cell leukaemia , 2015, Best practice & research. Clinical haematology.

[49]  Ryanne A. Brown,et al.  ETV3-NCOA2 in indeterminate cell histiocytosis: clonal translocation supports sui generis. , 2015, Blood.

[50]  C. von Kalle,et al.  Recurrent CDKN1B (p27) mutations in hairy cell leukemia. , 2015, Blood.

[51]  L. Weiss,et al.  Evidence of BRAF V600E in indeterminate cell tumor and interdigitating dendritic cell sarcoma. , 2015, Annals of diagnostic pathology.

[52]  Ling Lin,et al.  MAP2K1 and MAP3K1 mutations in langerhans cell histiocytosis , 2015, Genes, chromosomes & cancer.

[53]  Jeffrey A Jones,et al.  Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. , 2015, Blood.

[54]  N. Radosevic-Robin,et al.  Common cancer-associated PIK3CA activating mutations rarely occur in Langerhans cell histiocytosis. , 2015, Blood.

[55]  B. Falini,et al.  BRAF inhibitors reverse the unique molecular signature and phenotype of hairy cell leukemia and exert potent antileukemic activity. , 2015, Blood.

[56]  F. Geissmann,et al.  Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors , 2014, Nature.

[57]  J. Martinez-Climent,et al.  KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype , 2014, Leukemia.

[58]  O. Abdel-Wahab,et al.  Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. , 2014, Blood.

[59]  D. Muzny,et al.  Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. , 2014, Blood.

[60]  S. Pileri,et al.  The Krüppel-like factor 2 transcription factor gene is recurrently mutated in splenic marginal zone lymphoma , 2014, Leukemia.

[61]  Larissa V Furtado,et al.  High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. , 2014, Blood.

[62]  O. Abdel-Wahab,et al.  Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. , 2014, Blood.

[63]  P. Feugier,et al.  Recommendations of the SFH (French Society of Haematology) for the diagnosis, treatment and follow-up of hairy cell leukaemia , 2014, Annals of Hematology.

[64]  Frank McCormick,et al.  Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond , 2014, Nature Reviews Cancer.

[65]  M. Berger,et al.  Hematopoietic Stem Cell Origin of BRAFV600E Mutations in Hairy Cell Leukemia , 2014, Science Translational Medicine.

[66]  B. Rollins,et al.  Somatic activating ARAF mutations in Langerhans cell histiocytosis. , 2014, Blood.

[67]  A. Rosenwald,et al.  Alternative BRAF mutations in BRAF V600E‐negative hairy cell leukaemias , 2014, British journal of haematology.

[68]  M. Merad,et al.  BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups , 2014, The Journal of experimental medicine.

[69]  A. McKenna,et al.  Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. , 2014, Cancer cell.

[70]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[71]  Paul S. Meltzer,et al.  High prevalence of MAP2K1 mutations in variant and IGHV4-34 expressing hairy-cell leukemia , 2013, Nature Genetics.

[72]  L. Borsu,et al.  Detection of an NRAS mutation in Erdheim-Chester disease. , 2013, Blood.

[73]  U. Pötschger,et al.  Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis. , 2013, Blood.

[74]  H. Döhner,et al.  BRAF mutations in chronic lymphocytic leukemia , 2013, Leukemia & lymphoma.

[75]  P. Cluzel,et al.  Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. , 2013, Blood.

[76]  R. Lothe,et al.  Frequent copy number gains at 1q21 and 1q32 are associated with overexpression of the ETS transcription factors ETV3 and ELF3 in breast cancer irrespective of molecular subtypes , 2013, Breast Cancer Research and Treatment.

[77]  B. Nathwani,et al.  Identification of the V600D mutation in Exon 15 of the BRAF oncogene in congenital, benign langerhans cell histiocytosis , 2013, Genes, chromosomes & cancer.

[78]  M. Copin,et al.  High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. , 2012, Blood.

[79]  F. Fraternali,et al.  B-RAF Mutant Alleles Associated with Langerhans Cell Histiocytosis, a Granulomatous Pediatric Disease , 2012, PloS one.

[80]  M. Raffeld,et al.  Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. , 2012, Blood.

[81]  N. Socci,et al.  Identification of a novel, recurrent HEY1‐NCOA2 fusion in mesenchymal chondrosarcoma based on a genome‐wide screen of exon‐level expression data , 2012, Genes, chromosomes & cancer.

[82]  D. Catovsky,et al.  Rituximab with pentostatin or cladribine: an effective combination treatment for hairy cell leukemia after disease recurrence , 2011, Leukemia & lymphoma.

[83]  D. Catovsky,et al.  Long-term results for pentostatin and cladribine treatment of hairy cell leukemia , 2011, Leukemia & lymphoma.

[84]  H. Koga,et al.  Juvenile myelomonocytic leukemia characterized by cutaneous lesion containing Langerhans cell histiocytosis-like cells , 2011, International journal of hematology.

[85]  W. Hahn,et al.  Recurrent BRAF mutations in Langerhans cell histiocytosis. , 2010, Blood.

[86]  R. Arceci,et al.  Central nervous system disease in Langerhans cell histiocytosis. , 2010, The Journal of pediatrics.

[87]  M. Merad,et al.  Cell-Specific Gene Expression in Langerhans Cell Histiocytosis Lesions Reveals a Distinct Profile Compared with Epidermal Langerhans Cells , 2010, The Journal of Immunology.

[88]  P. Cin,et al.  Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX‐FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family , 2009, Genes, chromosomes & cancer.

[89]  S. Pileri,et al.  Hairy cell leukemias with unmutated IGHV genes define the minor subset refractory to single-agent cladribine and with more aggressive behavior. , 2009, Blood.

[90]  M. Stetler-Stevenson,et al.  VH4-34+ hairy cell leukemia, a new variant with poor prognosis despite standard therapy. , 2009, Blood.

[91]  B. Rollins,et al.  Langerhans cell histiocytosis: malignancy or inflammatory disorder doing a great job of imitating one? , 2009, Disease Models & Mechanisms.

[92]  M. Hoogeboom,et al.  No genomic aberrations in Langerhans cell histiocytosis as assessed by diverse molecular technologies , 2009, Genes, chromosomes & cancer.

[93]  J. Donadieu,et al.  Descriptive epidemiology of childhood Langerhans cell histiocytosis in France, 2000–2004 , 2008, Pediatric blood & cancer.

[94]  B. Fadeel,et al.  Incidence of Langerhans cell histiocytosis in children: A population‐based study , 2008, Pediatric blood & cancer.

[95]  A. Fischer,et al.  Expansion of Regulatory T Cells in Patients with Langerhans Cell Histiocytosis , 2007, PLoS medicine.

[96]  R. Jaffe,et al.  Uncommon histiocytic disorders: The non‐Langerhans cell histiocytoses , 2005, Pediatric blood & cancer.

[97]  Richard Marais,et al.  The RAF proteins take centre stage , 2004, Nature Reviews Molecular Cell Biology.

[98]  R. Jaffe,et al.  Langerin (CD207) Staining in Normal Pediatric Tissues, Reactive Lymph Nodes, and Childhood Histiocytic Disorders , 2004, Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society.

[99]  K. Basso,et al.  Gene Expression Profiling of Hairy Cell Leukemia Reveals a Phenotype Related to Memory B Cells with Altered Expression of Chemokine and Adhesion Receptors , 2004, The Journal of experimental medicine.

[100]  I. Weissman,et al.  Langerhans cells renew in the skin throughout life under steady-state conditions , 2002, Nature Immunology.

[101]  C. Nezelof,et al.  From Histiocytosis X to Langerhans Cell Histiocytosis: A Personal Account , 2001, International journal of surgical pathology.

[102]  H. Petit,et al.  Erdheim‐Chester Disease Clinical and Radiologic Characteristics of 59 Cases , 1996, Medicine.

[103]  Broadbent,et al.  Langerhans cell histiocytosis--clinical and epidemiological aspects. , 1994, The British journal of cancer. Supplement.

[104]  R. Winkelmann,et al.  The indeterminate cell proliferative disorder: report of a case manifesting as an unusual cutaneous histiocytosis. , 1985, The Journal of dermatologic surgery and oncology.

[105]  F. Basset,et al.  Histiocytosis X histogenetic arguments for a Langerhans cell origin. , 1973, Biomedicine / [publiee pour l'A.A.I.C.I.G.].

[106]  P. Destombes [Adenitis with lipid excess, in children or young adults, seen in the Antilles and in Mali. (4 cases)]. , 1965, Bulletin de la Societe de pathologie exotique et de ses filiales.

[107]  L. Lichtenstein Histiocytosis X; integration of eosinophilic granuloma of bone, Letterer-Siwe disease, and Schüller-Christian disease as related manifestations of a single nosologic entity. , 1953, A.M.A. archives of pathology.

[108]  Sture A. Siwe Die Reiticuloendotheliose — ein neues Krankheitsbild unter den Hepatosphlenomegalien , 1933, Zeitschrift für Kinderheilkunde.

[109]  J. Mcdonagh A CONTRIBUTION TO OUR KNOWLEDGE OF THE NÆVO‐XANTHO‐ENDOTHELIOMATA , 1912 .

[110]  A. Saven,et al.  Current Therapy and New Directions in the Treatment of Hairy Cell Leukemia: A Review. , 2016, JAMA oncology.

[111]  Mario Cazzola,et al.  The BRAF V600E mutation in hairy cell leukemia and other mature B-cell neoplasms. , 2012, Blood.

[112]  Y. Natkunam,et al.  Atypical cellular disorders. , 2004, Hematology. American Society of Hematology. Education Program.

[113]  J. Rosai,et al.  Sinus histiocytosis with massive lymphadenopathy. A newly recognized benign clinicopathological entity. , 1969, Archives of pathology.