Sources of C20-polyunsaturated fatty acids for biotechnological use

SummaryPolyunsaturated fatty acids with 20 carbon atoms exhibit unique physiological activities in the human body, for example lowering of cholesterol and triacylglycerols in plasma, prevention of atherosclerosis and other cardiovascular diseases and reduction of colagen-induced thrombocyte aggregation. Moreover, these fatty acids are of great value in the nutrition of edible marine animals reared in mariculture, and as precursors of eicosanoid hormones. Potential sources of such fatty acids include fungi, mainly lower Phycomycetes, microalgae, viz. dinoflagellates, diatoms and unicellular red algae, marine macroalgae, particularly Phaeophyta and Rhodophyta, and mosses. The biomass may be enriched with C20-polyunsaturated fatty acids by chilling, nitrogen starvation, controlled illumination and incubation with lipophilic compounds.

[1]  Geoffrey Eglinton,et al.  Lipid composition of the marine dinoflagellate Scrippsiella trochoidea , 1988 .

[2]  R. Quinn,et al.  The occurrence of prostaglandins PGE2 and PGF2α in a plant - the red alga . , 1979 .

[3]  M. Kates,et al.  Sterols, aliphatic hydrocarbons, and fatty acids of a nonphotosynthetic diatom,Nitzschia alba , 1974, Lipids.

[4]  F. I. Opute Lipid and Fatty-acid Composition of Diatoms , 1974 .

[5]  J. Dyerberg Linolenate-derived polyunsaturated fatty acids and prevention of atherosclerosis. , 2009, Nutrition reviews.

[6]  M. Cojocaru,et al.  Gas chromatographic/mass spectrometric analysis of fatty acids found in aquatic algae , 1988 .

[7]  D. Horrobin,et al.  The role of linoleic acid and its metabolites in the lowering of plasma cholesterol and the prevention of cardiovascular disease. , 1987, International journal of cardiology.

[8]  D. Orcutt,et al.  Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. , 1975, Comparative biochemistry and physiology. B, Comparative biochemistry.

[9]  M. Kates,et al.  Lipid components of diatoms. , 1966, Biochimica et biophysica acta.

[10]  E. Corey,et al.  The role of the symbiotic algae of Plexaura homomalla in prostaglandin biosynthesis. , 1974, Journal of the American Chemical Society.

[11]  L. Jones,et al.  Lipids of the marine red algae, Chondrus crispus and Polysiphonia lanosa , 1989 .

[12]  S. Radwan,et al.  Arachidonic and Eicosapentaenoic Acids in Lipids of Bryum bicolor Dicks. Effects of Controlled Temperature and Illumination , 1989 .

[13]  D. Higgs,et al.  Preliminary evaluation of canola oil, pork lard and marine lipid singly and in combination as supplemental dietary lipid sources for juvenile fall chinook salmon (Oncorhynchus tshawytscha) , 1988 .

[14]  S. Shimizu,et al.  Conversion of linseed oil to an eicosapentaenoic acid-containing oil by Mortierella alpina 1S-4 at low temperature , 1989, Applied Microbiology and Biotechnology.

[15]  G. Weeks,et al.  The manipulation of the fatty acid composition of Dictyostelium discoideum and its effect on cell differentiation. , 1976, Biochimica et biophysica acta.

[16]  D. Beach,et al.  Biosynthesis of oleic acid and docosahexaenoic acid by a heterotrophic marine dinoflagellate Crypthecodinium cohnii. , 1974, Biochimica et biophysica acta.

[17]  J. Sargent,et al.  Lipid composition and biosynthesis in ageing cultures of the marine cryptomonad, Chroomonas salina , 1989 .

[18]  Kazuaki Kato,et al.  Component Fatty Acids of Acetone-Soluble Lipids of 17 Species of Marine Benthic Algae , 1974 .

[19]  P. Karunen Studies on Moss Spores. VII. Fatty Acid Composition of Mono- and Diglycosyl Diglyceride Fractions of Germinating Polytrichum commune Spores' , 1978 .

[20]  Hiroshi Kawashima,et al.  Production of arachidonic acid by Mortierella fungi , 1989, Applied Microbiology and Biotechnology.

[21]  G. J. Perry,et al.  FATTY ACID COMPOSITION OF TEN MARINE ALGAE FROM AUSTRALIAN WATERS , 1979 .

[22]  S. Radwan,et al.  Lipids of the Gametophyte and Sporophyte of Funaria hygrometrica. Comparison with Lipids from Leaves of Vascular Plants , 1990 .

[23]  C. Pace-Asciak,et al.  A novel prostaglandin derivative formed from arachidonic acid by rat stomach homogenates. , 1971, Biochemistry.

[24]  A. Richmond,et al.  EFFECT OF ENVIRONMENTAL CONDITIONS ON FATTY ACID COMPOSITION OF THE RED ALGA PORPHYRIDIUM CRUENTUM: CORRELATION TO GROWTH RATE 1 , 1988 .

[25]  N. Grimsley,et al.  Fatty acid composition of mutants of the moss Physcomitrella patens , 1981 .

[26]  C. Kitajima,et al.  Relationship between dietary value of brine shrimp Artemia salina and their content of omega 3 highly unsaturated fatty acids. , 1980 .

[27]  C. W. Hesseltine,et al.  Culture conditions affect eicosapentaenoic acid content ofChlorella minutissima , 1984 .

[28]  D. Eberhagen,et al.  Über die ungesättigten Fettsäuren der Fettstoffe von Süßwasser- und Meeresalgen , 1963 .

[29]  S. Shimizu,et al.  Production of Arachidonic Acid by Mortierella elongata 1S-5 , 1987 .

[30]  R. B. Johns,et al.  THE LIPID COMPOSITION OF THORACOSPHAERA HEIMII: EVIDENCE FOR INCLUSION IN THE DINOPHYCEAE 1 , 1983 .

[31]  M. Sugano,et al.  Effects of Mold Oil Containing y-Linolenic Acid on the Blood Cholesterol and Eicosanoid Levels in Rats , 1986 .

[32]  J. Ludvík,et al.  Ultrastructural changes in the yeastCandida lipolytica caused by penetration of hydrocarbons into the cell , 1968, Experientia.

[33]  F. Hantash,et al.  Enriching marine macroalgae with eicosatetraenoic (arachidonic) and eicosapentaenoic acids by chilling , 1991, Applied Microbiology and Biotechnology.

[34]  G. L. Floyd,et al.  Fatty acids filamentous green algae , 1977 .

[35]  M. Dostálek,et al.  Production of γ-linolenic acid by the fungus Mucor rouxii in fed-batch and continuous culture , 1989, Applied Microbiology and Biotechnology.

[36]  J. Sargent,et al.  Lipid composition and biosynthesis in the marine dinoflagellate Crypthecodinium cohnii , 1988 .

[37]  Hiroshi Kawashima,et al.  Production of eicosapentaenoic acid byMortierella fungi , 1988 .

[38]  P. Mayzaud,et al.  The occurrence and distribution of octadecapentaenoic acid in a natural plankton population. A possible food chain index , 1976, Lipids.

[39]  J. Harwood,et al.  Lipid metabolism in the red marine algae Chondrus crispus and Polysiphonia lanosa as modified by temperature , 1989 .

[40]  R. Mumma,et al.  Fungi pathogenic to insects: III. Neutral and polar lipids ofEntomophthora coronata , 1973, Lipids.

[41]  J. P. Riley,et al.  Component Fatty Acids of the Total Lipids of Some Marine Phytoplankton , 1969, Journal of the Marine Biological Association of the United Kingdom.

[42]  H. Tan,et al.  Effect of salinity of medium on cellular fatty acid composition of marine algaPorphyridium cruentum (Rhodophyceae) , 1989, Journal of Applied Phycology.

[43]  F. Hantash,et al.  High contents of homo-α-linolenic acid (20:3 ω3) in gametophores of two mosses , 1991 .

[44]  M. Čertík,et al.  Influence of different carbon sources on growth, lipid content and fatty acid composition in four strains belonging to mucorales , 1988, Biotechnology Letters.

[45]  S. Safe Lipid and alkali extractable fatty acids fromMucor rouxii: Effect of thermal changes in growth environment and age of cells , 1974, Lipids.

[46]  Y. Carmeli,et al.  REGULATION OF FATTY ACID COMPOSITION BY IRRADIANCE LEVEL IN THE EUSTIGMATOPHYTE NANNOCHLOROPSIS SP. 1 , 1989 .

[47]  J. Harwood,et al.  Lipids and lipid metabolism in the brown alga, Fucus serratus , 1984 .

[48]  G. Newkirk,et al.  Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. , 1986 .

[49]  N. Sato,et al.  Characterization of Sulfoquinovosyl Diacylglycerol from Marine Red Algae , 1989 .

[50]  M. Dostálek,et al.  Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungus Mortierella ramanniana , 1988, Applied Microbiology and Biotechnology.

[51]  J. Joseph Identification of 3, 6, 9, 12, 15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates , 1975, Lipids.

[52]  G. Jaworski,et al.  Hydrocarbons, sterols, esters and fatty acids in six freshwater chlorophytes , 1990 .

[53]  M. Yamada,et al.  Positional distribution of fatty acids in lipids of the marine diatom Phaeodactylum tricornutum , 1987 .

[54]  J. Dupuy,et al.  The fatty acid composition of three unicellular algal species used as food sources for larvae of the American oyster (Crassostrea virginica) , 1980, Lipids.

[55]  H. Yamada,et al.  Fungal mycelia as a novel source of eicosapentaenoic acid. Activation of enzyme(s) involved in eicosapentaenoic acid production at low temperature. , 1988, Biochemical and biophysical research communications.

[56]  S. Katoh,et al.  Arachidonic acid production by the red alga Porphyridium cruentum , 1983, Biotechnology and bioengineering.

[57]  S. Konosu,et al.  Cytotoxic polyunsaturated fatty acid from Pediastrum , 1989 .

[58]  E. Schröder,et al.  Degradation of long chain n-alkanes by Chlorococcales , 1981, European journal of applied microbiology and biotechnology.

[59]  N. Totani,et al.  A simple method for production of arachidonic acid byMortierella alpina , 1988, Applied Microbiology and Biotechnology.

[60]  G. Eglinton,et al.  Sterols and fatty acids of the marine diatom biddulphia sinensis , 1980 .

[61]  J. Gellerman,et al.  Highly Unsaturated Lipids of Mnium, Polytrichum, Marchantia, and Matteuccia , 1972 .

[62]  D. Horrobin,et al.  Polyunsaturated fatty acids augment free radical generation in tumor cells in vitro. , 1987, Biochemical and biophysical research communications.

[63]  R. Appleby,et al.  The distribution and biosynthesis of arachidonic acid in algae , 1969 .

[64]  R. Shaw The polyunsaturated fatty acids of microorganisms. , 1966, Advances in lipid research.

[65]  M. S. Manocha,et al.  The effect of growth temperature on the fatty acid composition of Thamnidium elegans Link. , 1978, Canadian journal of microbiology.

[66]  C. Breuil,et al.  Cellular and extracellular lipids of Acinetobacter lwoffi during growth on hexadecane , 1982 .

[67]  J. Weete,et al.  Fatty acids and sterols of selected hyphochytriomycetes and chytridiomycetes , 1989 .

[68]  R. S. Kennedy,et al.  Microbial assimilation of hydrocarbons , 2004, Archives of Microbiology.

[69]  Robert J. S. Thomas Lipid composition of maturing and elongate liverwort sporophytes , 1975 .

[70]  S. Radwan,et al.  Arachidonic Acid from Fungi Utilizing Fatty Acids with Shorter Chains as Sole Sources of Carbon and Energy , 1988 .

[71]  M. Yamada,et al.  Positional distribution of fatty acids in galactolipids of algae , 1989 .

[72]  Yoko Yamamoto,et al.  FATTY ACID COMPOSITION OF LICHENS AND THEIR PHYCO- AND MYCOBIONTS , 1974 .

[73]  R. Micetich,et al.  STEROIDS AND THE STIMULATION OF SEXUAL REPRODUCTION OF A SPECIES OF PYTHIUM , 1964 .

[74]  J. Litchfield Single-Cell Proteins , 1983, Science.

[75]  C. Langdon,et al.  The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas Spat , 1981, Journal of the Marine Biological Association of the United Kingdom.

[76]  R. Shaw The occurrence of γ-linolenic acid in fungi , 1965 .

[77]  S. Radwan,et al.  Effect of salinity on the lipid and fatty acid composition of the halophyteNavicula sp.: potential in mariculture , 1990, Journal of Applied Phycology.

[78]  H. Nyberg,et al.  The phospholipid fatty acids of Porphyridium purpureum cultured in the presence of triton x-100 and sodium desoxycholate , 1984 .

[79]  F. T. Wolf,et al.  Lipid composition and metabolism in oospores and oospheres ofAchlya americana , 1983 .