TOOLS FOR NON-LINEAR TIME SERIES FORECASTING IN ECONOMICS – AN EMPIRICAL COMPARISON OF REGIME SWITCHING VECTOR AUTOREGRESSIVE MODELS AND RECURRENT NEURAL NETWORKS

The purpose of this study is to contrast the forecasting performance of two non-linear models, a regime-switching vector autoregressive model (RS-VAR) and a recurrent neural network (RNN), to that of a linear benchmark VAR model. Our specific forecasting experiment is U.K. inflation and we utilize monthly data from 1969 to 2003. The RS-VAR and the RNN perform approximately on par over both monthly and annual forecast horizons. Both non-linear models perform significantly better than the VAR model.

[1]  Paolo Tenti,et al.  Forecasting Foreign Exchange Rates Using Recurrent Neural Networks , 1996, Appl. Artif. Intell..

[2]  R. Gencay Non-linear prediction of security returns with moving average rules , 1996 .

[3]  James D. Hamilton Time Series Analysis , 1994 .

[4]  Klaassen Improving GARCH Volatility Forecasts with Regime-Switching GARCH Klaassen, F.J.G.M , 2001 .

[5]  Saeed Moshiri,et al.  Static, Dynamic, and Hybrid Neural Networks in Forecasting Inflation , 1998 .

[6]  René Garcia,et al.  Série Scientifique Scientific Series an Analysis of the Real Interest Rate under Regime Shifts , 2022 .

[7]  Eduardo Sontag,et al.  Turing computability with neural nets , 1991 .

[8]  C. Helmenstein,et al.  Neural networks in the capital markets: An application to index forecasting , 1996 .

[9]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[10]  Les E. Atlas,et al.  Recurrent neural networks and robust time series prediction , 1994, IEEE Trans. Neural Networks.

[11]  C. L. Giles,et al.  Sequence Learning - Paradigms, Algorithms, and Applications , 2001 .

[12]  Ah Chung Tsoi,et al.  Noisy Time Series Prediction using Recurrent Neural Networks and Grammatical Inference , 2001, Machine Learning.

[13]  Norman R. Swanson,et al.  A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks , 1995 .

[14]  James D. Hamilton Rational-expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates , 1988 .

[15]  Jean-Cédric Chappelier,et al.  Time in Connectionist Models , 2001, Sequence Learning.

[16]  Sandiway Fong,et al.  Natural Language Grammatical Inference with Recurrent Neural Networks , 2000, IEEE Trans. Knowl. Data Eng..

[17]  John E. Moody,et al.  Note on Learning Rate Schedules for Stochastic Optimization , 1990, NIPS.

[18]  W. Enders Applied Econometric Time Series , 1994 .

[19]  Jing Peng,et al.  An Efficient Gradient-Based Algorithm for On-Line Training of Recurrent Network Trajectories , 1990, Neural Computation.

[20]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[21]  Philip Hans Franses,et al.  On forecasting exchange rates using neural networks , 1998 .

[22]  Christian Haefke,et al.  Forecasting Austrian IPOs: An Application of Linear and Neural Network Error-Correction Models , 1996 .

[23]  Ramazan Gençay,et al.  Linear, non-linear and essential foreign exchange rate prediction with simple technical trading rules , 1999 .

[24]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[25]  Hans-Martin Krolzig,et al.  Predicting Markov-Switching Vector Autoregressive Processes , 2000 .

[26]  G. C. Tiao,et al.  An introduction to multiple time series analysis. , 1993, Medical care.

[27]  Kai-Fu Lee Hidden Markov models: past, present, and future , 1989, EUROSPEECH.

[28]  Philip Hans Franses,et al.  Forecasting Exchange Rates Using Neural Networks for Technical Trading Rules , 1998 .

[29]  Thanasis Stengos,et al.  Moving average rules, volume and the predictability of security returns with feedforward networks , 1998 .

[30]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[31]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[32]  D. M. Titterington,et al.  Neural Networks: A Review from a Statistical Perspective , 1994 .

[33]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[34]  Michael I. Jordan Attractor dynamics and parallelism in a connectionist sequential machine , 1990 .

[35]  Barak A. Pearlmutter Gradient calculations for dynamic recurrent neural networks: a survey , 1995, IEEE Trans. Neural Networks.

[36]  Boris Kovalerchuk,et al.  Data mining in finance , 2000 .

[37]  Emdad Khan,et al.  Recurrent Fuzzy Logic Using Neural Network , 1994, IEEE/Nagoya-University World Wisepersons Workshop.

[38]  Keith H. Black International Asset Allocation with Regime Shifts , 2003 .

[39]  Chung-Ming Kuan,et al.  Forecasting exchange rates using feedforward and recurrent neural networks , 1992 .

[40]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[41]  Jimmy Shadbolt,et al.  Neural Networks and the Financial Markets: "Predicting, Combining And Portfolio Optimisation" , 2002 .

[42]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[43]  J. Binner,et al.  Financial innovation and Divisia monetary indices in Taiwan: a neural network approach , 2002 .

[44]  J. Stock,et al.  A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series , 1998 .

[45]  Paul J. Werbos,et al.  Backpropagation Through Time: What It Does and How to Do It , 1990, Proc. IEEE.

[46]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[47]  S. Goldfeld,et al.  A Markov model for switching regressions , 1973 .

[48]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[49]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .