Modeling and Design of Electronically Tunable Reflectarrays

The reflectarray has significant promise in applications requiring high-gain, low-profile reflectors. Recent advances in tuning technology have raised the possibility of realizing electronically tunable reflectarrays, which can dynamically adjust their radiation patterns. This paper presents an electronically tunable reflectarray based on elements tuned using varactor diodes. Modeling approaches based on an equivalent circuit representation and computational electromagnetics simulations are presented. Both techniques accurately predict the scattering characteristics of the unit cell as compared to experimental measurements. The development of a unit cell with over 320omicron of phase agility at 5.5 GHz is discussed. Finally, a 70-element electronically tunable reflectarray prototype operating at 5.8 GHz is presented. Radiation pattern measurements with the reflectarray demonstrate its dynamic beam-forming characteristics. Measurements of the gain of the reflectarray correlate well with theoretical expectations.

[1]  I. A. BmFOUR Simulation of a Phased-Array Antenna in Waveguide , 1964 .

[2]  Microstrip disc element reflect array , 1978 .

[3]  Frederick G. Farrar,et al.  Frequency agile microstrip antennas , 1980 .

[4]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[5]  Prakash Bhartia,et al.  A frequency agile microstrip antenna , 1982 .

[6]  R. H. Jansen,et al.  The Equivalent Circuit of the Asymmetrical Series Gap in Microstrip and Suspended Substrate Lines , 1982 .

[7]  A. Kelkar,et al.  FLAPS: conformal phased reflecting surfaces , 1991, Proceedings of the 1991 IEEE National Radar Conference.

[8]  J. Huang,et al.  Microstrip reflectarray , 1991, Antennas and Propagation Society Symposium 1991 Digest.

[9]  David M. Pozar,et al.  Analysis and design of a microstrip reflectarray using patches of variable size , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[10]  R. B. Waterhouse,et al.  Full characterisation of varactor-loaded, probe-fed, rectangular, microstrip patch antennas , 1994 .

[11]  Kai Chang,et al.  Design and performance of a microstrip reflectarray antenna , 1995 .

[12]  Dau-Chyrh Chang,et al.  Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization , 1995 .

[13]  Joel F. Walker,et al.  Novel reflectarray element with variable phase characteristics , 1997 .

[14]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[15]  N. Fayyaz,et al.  A novel electronically tunable rectangular patch antenna with one octave bandwidth , 1998, Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341).

[16]  R. Pogorzelski,et al.  A Ka-band microstrip reflectarray with elements having variable rotation angles , 1998 .

[17]  David M. Pozar,et al.  A shaped-beam microstrip patch reflectarray , 1999 .

[18]  Felix A. Miranda,et al.  -Band Phased Array Antennas Based on Ba Sr TiO Thin-Film Phase Shifters , 2000 .

[19]  Felix A. Miranda,et al.  K-band phased array antennas based on Ba/sub 0.60/Sr/sub 0.40/TiO/sub 3/ thin-film phase shifters , 2000 .

[20]  J.J. Lee,et al.  A wideband beam switching antenna using RF MEMS switches , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[21]  L. Boccia,et al.  Application of varactor diodes for reflectarray phase control , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[22]  Wolfgang Menzel,et al.  Millimeter-wave folded reflector antennas with high gain, low loss, and low profile , 2002 .

[23]  R. Gillard,et al.  An FDTD optimization of a circularly polarized reflectarray unit cell , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[24]  F. Tsai,et al.  Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach , 2003 .

[25]  N. Misran,et al.  Design optimisation of ring elements for broadband reflectarray antennas , 2003 .

[26]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[27]  Kai Chang,et al.  Circularly polarized reflectarray with microstrip ring elements having variable rotation angles , 2004, IEEE Transactions on Antennas and Propagation.

[28]  G. Di Massa,et al.  A microstrip patch antenna oscillator for reflectarray applications , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[29]  Y. Rahmat-Samii,et al.  Reconfigurable reflectarray with variable height patch elements: design and fabrication , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[30]  J.I.M. Lopez,et al.  Spiraphase-type reflectarrays based on loaded ring slot resonators , 2004, IEEE Transactions on Antennas and Propagation.

[31]  J. Huang,et al.  A C/ka dual frequency dual Layer circularly polarized reflectarray antenna with microstrip ring elements , 2004, IEEE Transactions on Antennas and Propagation.

[32]  J. A. Zornoza,et al.  Three-layer printed reflectarrays for contoured beam space applications , 2004, IEEE Transactions on Antennas and Propagation.

[33]  M. Okoniewski,et al.  Realizing an electronically tunable reflectarray using varactor diode-tuned elements , 2005, IEEE Microwave and Wireless Components Letters.

[34]  P. Pons,et al.  MEMS controlled linearly polarised reflectarray elements , 2006, 2006 12th International Symposium on Antenna Technology and Applied Electromagnetics and Canadian Radio Sciences Conference.

[35]  Sean V. Hum,et al.  Integrated mems reflectarray elements , 2006, 2006 First European Conference on Antennas and Propagation.

[36]  Rolf Jakoby,et al.  Electronically reconfigurable reflectarrays with nematic liquid crystals , 2006 .