Artifacts and Visible Singularities in Limited Data X-Ray Tomography

We describe a principle to determine which features of an object will be easy to reconstruct from limited X-ray CT data and which will be difficult. The principle depends on the geometry of the data set, and it applies to any limited data set. We also describe a characterization of Frikel and the author explaining artifacts that can be added to limited angle reconstructions, and we provide an easy-to-implement method to decrease them. These ideas are justified using microlocal analysis, deep mathematics that involves Fourier theory. Reconstructions from simulated and real limited data are given to illustrate our ideas.

[1]  Andreas Rieder,et al.  Incomplete data problems in X-ray computerized tomography , 1989 .

[2]  Otmar Scherzer,et al.  Shape Reconstruction with A Priori Knowledge Based on Integral Invariants , 2012, SIAM J. Imaging Sci..

[3]  P. Hansen Discrete Inverse Problems: Insight and Algorithms , 2010 .

[4]  Shlomo Sternberg,et al.  Geometric Asymptotics, Revised edition , 1977 .

[5]  E. T. Quinto Tomographic reconstructions from incomplete data-numerical inversion of the exterior Radon transform , 1988 .

[6]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[7]  Eric Todd Quinto,et al.  Exterior and limited-angle tomography in non-destructive evaluation , 1998 .

[8]  Linh V. Nguyen How strong are streak artifacts in limited angle computed tomography? , 2014, 1407.3037.

[9]  Alfred K. Louis,et al.  Feature reconstruction in inverse problems , 2011 .

[10]  A. Louis,et al.  Picture reconstruction from projections in restricted range , 1980 .

[11]  Linh V. Nguyen On Artifacts in Limited Data Spherical Radon Transform: Flat Observation Surfaces , 2014, SIAM J. Math. Anal..

[12]  Eric Todd Quinto,et al.  Limited Data Problems for the Generalized Radon Transform in ℝn , 2015, SIAM J. Math. Anal..

[13]  G. Beylkin The inversion problem and applications of the generalized radon transform , 1984 .

[14]  Eric Todd Quinto,et al.  MICROLOCAL ASPECTS OF COMMON OFFSET SYNTHETIC APERTURE RADAR IMAGING , 2011 .

[15]  A. Cormack Representation of a Function by Its Line Integrals, with Some Radiological Applications , 1963 .

[16]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[17]  E. T. Quinto,et al.  An Introduction to X-ray tomography and Radon Transforms , 2006 .

[18]  M. E. Davison,et al.  Tomographic reconstruction with arbitrary directions , 1981 .

[19]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[20]  Maarten V. de Hoop,et al.  Microlocal Analysis of Seismic Inverse Scattering , 2003 .

[21]  Eric Todd Quinto,et al.  Artifacts in Incomplete Data Tomography with Applications to Photoacoustic Tomography and Sonar , 2014, SIAM J. Appl. Math..

[22]  E. T. Quinto Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform , 1983 .

[23]  Victor J. Sank,et al.  IMAGE RECONSTRUCTION FROM PROJECTIONS: ***I , 1978 .

[24]  Erik L. Ritman,et al.  Local Tomography II , 1997, SIAM J. Appl. Math..

[25]  Alexander Katsevich,et al.  Local Tomography for the Limited-Angle Problem , 1997 .

[26]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[27]  Eric Todd Quinto,et al.  Microlocal Analysis in Tomography , 2015, Handbook of Mathematical Methods in Imaging.

[28]  P. Kuchment,et al.  On local tomography , 1995 .

[29]  David V. Finch CONE BEAM RECONSTRUCTION WITH SOURCES ON A CURVE , 1985 .

[30]  Alexander Katsevich,et al.  Reconstruction Algorithms for a Class of Restricted Ray Transforms Without Added Singularities , 2016, 1603.07617.

[31]  Alfred K. Louis,et al.  A unified approach to regularization methods for linear ill-posed problems , 1999 .

[32]  E. T. Quinto Local algorithms in exterior tomography , 2007 .

[33]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[34]  G. Uhlmann,et al.  Nonlocal inversion formulas for the X-ray transform , 1989 .

[35]  Eric Todd Quinto,et al.  Characterization and reduction of artifacts in limited angle tomography , 2013 .

[36]  David V. Finch,et al.  Uniqueness for the attenuated x-ray transform in the physical range , 1986 .

[37]  Plamen Stefanov,et al.  Is a Curved Flight Path in SAR Better than a Straight One? , 2012, SIAM J. Appl. Math..

[38]  David V. Finch,et al.  Microlocal Analysis of the X-Ray Transform with Sources on a Curve , 2003 .

[39]  Jurgen Frikel,et al.  Sparse regularization in limited angle tomography , 2011, 1109.0385.

[40]  F. Natterer,et al.  Efficient implementation of `Optimal' algorithms in computerized tomography , 1980 .

[41]  Jerrold E. Marsden,et al.  Review: Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, and Nolan R. Wallach, Symplectic geometry and Fourier analysis , 1979 .

[42]  Guohua Cao,et al.  Image reconstruction from limited angle projections collected by multisource interior x-ray imaging systems , 2011, Physics in medicine and biology.

[43]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[44]  S. Helgason Integral Geometry and Radon Transforms , 2010 .

[45]  E. T. Quinto,et al.  Local Tomography in Electron Microscopy , 2008, SIAM J. Appl. Math..

[46]  L. Hörmander Fourier integral operators. I , 1995 .

[47]  V. Palamodov,et al.  Reconstruction from limited data of arc means , 2000 .