Density Matrix Renormalization Group Approach to Nonequilibrium Phenomena
暂无分享,去创建一个
Andreas Degenhard | Javier Rodríguez-Laguna | Silvia N. Santalla | A. Degenhard | J. Rodríguez-Laguna | S. N. Santalla
[1] On the choice of the density matrix in the stochastic TMRG , 2001, cond-mat/0106194.
[2] O. Seeberg. Statistical Mechanics. — A Set of Lectures , 1975 .
[3] A. Schadschneider,et al. Stochastic light-cone CTMRG: a new DMRG approach to stochastic models , 2002 .
[4] S. Rommer,et al. CLASS OF ANSATZ WAVE FUNCTIONS FOR ONE-DIMENSIONAL SPIN SYSTEMS AND THEIR RELATION TO THE DENSITY MATRIX RENORMALIZATION GROUP , 1997 .
[5] J. Zittartz,et al. LETTER TO THE EDITOR: Transfer-matrix density-matrix renormalization group for stochastic models: the Domany-Kinzel cellular automaton , 2001 .
[6] José A. González. Quantum Electron Liquids and High-Tc Superconductivity , 1995 .
[7] William H. Press,et al. Numerical recipes in C , 2002 .
[8] N. Kampen,et al. Stochastic processes in physics and chemistry , 1981 .
[9] The correlated block renormalization group , 1995, cond-mat/9512130.
[10] T. Nishino,et al. Transfer-matrix approach to classical systems , 1999 .
[11] N. Goldenfeld. Lectures On Phase Transitions And The Renormalization Group , 1972 .
[12] Density-matrix renormalization-group study of excitons in dendrimers , 2000, cond-mat/0012382.
[13] R. Zwanzig. Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).
[14] Application of the Density Matrix Renormalization Group Methodto a Non-Equilibrium Problem , 1997, cond-mat/9711072.
[15] L. Kadanoff. Scaling laws for Ising models near T(c) , 1966 .
[16] John B. Kogut,et al. An introduction to lattice gauge theory and spin systems , 1979 .
[17] A. Barabasi,et al. Fractal concepts in surface growth , 1995 .
[18] M. Henkel,et al. Density matrix renormalization group and reaction-diffusion processes , 1999, cond-mat/9902041.
[19] Generalized contact process with n absorbing states. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] Critical properties of the reaction-diffusion model 2A-->3A, 2A-->0. , 1999, Physical review. E, Statistical, nonlinear, and soft matter physics.
[21] A. Fisher,et al. The Theory of critical phenomena , 1992 .
[22] Real Space Renormalization Group Techniques and Applications , 2002, cond-mat/0207340.
[23] G. Sierra,et al. Russian doll renormalization group and Kosterlitz–Thouless flows , 2003 .
[24] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[25] A non-perturbative real-space renormalization group scheme , 1999, cond-mat/9910511.
[26] M. Suzuki,et al. Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .
[27] Karen Hallberg. Density Matrix Renormalization , 1999 .
[28] G. Schütz. 1 – Exactly Solvable Models for Many-Body Systems Far from Equilibrium , 2001 .
[29] White,et al. Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.
[30] Pair contact process with diffusion: anew type of nonequilibrium critical behavior? , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.
[31] White,et al. Real-space quantum renormalization groups. , 1992, Physical review letters.
[32] K. Wilson. The renormalization group: Critical phenomena and the Kondo problem , 1975 .