Lowest density MDS codes over extension alphabets

Let F be a finite field and b be a positive integer. A construction is presented of codes over the alphabet F/sup b/ with the following three properties: i) the codes are maximum-distance separable (MDS) over F/sup b/, ii) they are linear over F, and iii) they have systematic generator and parity-check matrices over F with the smallest possible number of nonzero entries. Furthermore, for the case F=GF(2), the construction is the longest possible among all codes that satisfy properties i)-iii).

[1]  Jehoshua Bruck,et al.  EVENODD: An Efficient Scheme for Tolerating Double Disk Failures in RAID Architectures , 1995, IEEE Trans. Computers.

[2]  J. Neukirch Algebraic Number Theory , 1999 .

[3]  Morris Newman,et al.  On a theorem of Čebotarev , 1976 .

[4]  M. M. Algæ , 2022 .

[5]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[6]  Ron M. Roth,et al.  On cyclic MDS codes of length q over GF(q) , 1986, IEEE Trans. Inf. Theory.

[7]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[8]  Alexander Vardy,et al.  MDS array codes with independent parity symbols , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[9]  R. Bellman Introduction To Matrix Analysis Second Edition , 1997 .

[10]  Jehoshua Bruck,et al.  X-Code: MDS Array Codes with Optimal Encoding , 1999, IEEE Trans. Inf. Theory.

[11]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[12]  Mario Blaum,et al.  On Lowest Density MDS Codes , 1999, IEEE Trans. Inf. Theory.

[13]  Rudolf Lide,et al.  Finite fields , 1983 .

[14]  S. Lang Algebraic Number Theory , 1971 .

[15]  H. Mattson,et al.  New 5-designs , 1969 .

[16]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .