Characterization of three-dimensional microstructures in single-crystal diamond

We report on the Raman and photoluminescence characterization of three-dimensional microstructures fabricated in single crystal diamond with a Focused Ion Beam (FIB) assisted lift-off technique. The fabrication method is based on MeV ion implantation, followed by FIB micropatterning and selective chemical etching. In a previous publication we reported on the fabrication of a micro-bridge structure exhibiting waveguiding behavior [P. Olivero, S. Rubanov, P. Reichart, B. Gibson, S. Huntington, J. Rabeau, Andrew D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, S. Prawer, Adv. Mater., 17 (20) (2005) 2427]. In the present work, Raman and photoluminescence spectroscopies are employed to characterize the structural quality of such microstructures, particularly as regards the removal of residual damage created during the machining process. Three-dimensional microstructures in high quality single crystal diamond have many applications, ranging from integrated quantum-optical devices to micro-electromechanical assemblies.

[1]  P. Schmid,et al.  Elements for surface microfluidics in diamond , 2004 .

[2]  Brant C. Gibson,et al.  Ion‐Beam‐Assisted Lift‐Off Technique for Three‐Dimensional Micromachining of Freestanding Single‐Crystal Diamond , 2005 .

[3]  David N. Jamieson,et al.  Raman investigation of damage caused by deep ion implantation in diamond , 2000 .

[4]  Brian H. Houston,et al.  Nanomechanical Resonant Structures in Nanocrystalline Diamond , 2002 .

[5]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[6]  Fahy,et al.  Molecular-dynamics study of single-atom radiation damage in diamond. , 1994, Physical review. B, Condensed matter.

[7]  Joan Adler,et al.  Identification of the point defects in diamond as measured by Raman spectroscopy: comparison between experiment and computation , 2004 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  C. Paul Christensen Micromachining of diamond substrates with waveguide excimer lasers , 1994, Other Conferences.

[10]  J. Burger,et al.  Chemical vapor deposition diamond for tips in nanoprobe experiments , 1996 .

[11]  David N. Jamieson,et al.  Materials Analysis Using a Nuclear Microprobe , 1996 .

[12]  Yong Qing Fu,et al.  Patterning of diamond microstructures by bulk and surface micromachining for MEMS devices , 2001, SPIE MOEMS-MEMS.

[13]  Pelle Rangsten,et al.  Diamond microstructures for optical micro electromechanical systems , 1999 .

[14]  J. Posthill,et al.  Single‐crystal diamond plate liftoff achieved by ion implantation and subsequent annealing , 1992 .

[15]  N. Manson,et al.  Observation of electromagnetically induced transparency within an electron spin resonance transition , 1999 .

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  W. Welford Principles of optics (5th Edition): M. Born, E. Wolf Pergamon Press, Oxford, 1975, pp xxviii + 808, £9.50 , 1975 .

[18]  F. Jelezko,et al.  Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition , 2004, cond-mat/0411245.

[19]  Yongqi Fu,et al.  Investigation of diffractive optical element fabricated on diamond film by use of focused ion beam direct milling , 2003 .

[20]  Baroni,et al.  Second-order Raman spectra of diamond from ab initio phonon calculations. , 1993, Physical review. B, Condensed matter.

[21]  White,et al.  Raman scattering from MeV-ion implanted diamond. , 1995, Physical review. B, Condensed matter.

[22]  A. Polycarpou,et al.  Use of the focused ion beam technique to produce a sharp spherical diamond indenter for sub-10 nm nanoindentation measurements , 2004 .

[23]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[24]  Joan Adler,et al.  Transformation of Diamond (sp3) to Graphite (sp2) Bonds by Ion-Impact , 1998 .

[25]  Mikael Karlsson,et al.  Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. , 2003, Optics express.

[26]  J. Ziegler THE STOPPING AND RANGE OF IONS IN SOLIDS , 1988 .

[27]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[28]  D. Adams,et al.  Focused ion beam milling of diamond: Effects of H2O on yield, surface morphology and microstructure , 2003 .

[29]  Egbert Oesterschulze,et al.  Fabrication of monolithic diamond probes for scanning probe microscopy applications , 1998 .

[30]  J. Prins Preparation of ohmic contacts to semiconducting diamond , 1989 .

[31]  Pal Molian,et al.  Micro- and Sub-Micromachining of Type IIa Single Crystal Diamond Using a Ti:Sapphire Femtosecond Laser , 2002 .

[32]  Reuben Shuker,et al.  Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials , 1970 .

[33]  D. Moses,et al.  Electrochemical Patterning of Amorphous Carbon on Diamond , 1993 .

[34]  R. Kalish,et al.  Damage threshold for ion‐beam induced graphitization of diamond , 1995 .