Volatile/Nonvolatile Dual-Functional Atom Transistor

We demonstrate a conceptually new atom transistor operation by electric-field control of the nanoionic state. The new atom transistor possesses novel characteristics, such as dual functionality of selective volatile and nonvolatile operations, very small power consumption (pW), and a high ON/OFF ratio [106 (volatile operation) to 108 (nonvolatile operation)], in addition to complementary metal oxide semiconductor (CMOS) process compatibility enabling the development of future computing systems that fully utilize highly-integrated CMOS technology. Cyclic endurance of 104 times switching was achieved with the prototype.

[1]  Takahiro Hanyu,et al.  Functionally separated, multiple-valued content-addressable memory and its applications , 1995 .

[2]  T. Gu,et al.  First-principles simulations on bulk Ta2O5 and Cu/Ta2O5/Pt heterojunction: Electronic structures and transport properties , 2009 .

[3]  T. Hasegawa,et al.  Electronic transport in Ta2O5 resistive switch , 2007 .

[4]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[5]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[6]  Masakazu Aono,et al.  A solid electrolyte nanometer switch , 2006, IEICE Trans. Electron..

[7]  T. Hasegawa,et al.  Effect of sulfurization conditions on structural and electrical properties of copper sulfide films , 2008 .

[8]  T. Hasegawa,et al.  Nanoionics Switching Devices: “Atomic Switches” , 2009 .

[9]  M. Aono,et al.  Nonvolatile triode switch using electrochemical reaction in copper sulfide , 2010 .

[10]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[11]  T. Schimmel,et al.  Gate-controlled atomic quantum switch. , 2004, Physical review letters.

[12]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[13]  K. Terabe,et al.  Forming and switching mechanisms of a cation-migration-based oxide resistive memory , 2010, Nanotechnology.

[14]  Masakazu Aono,et al.  Solid-Electrolyte Nanometer Switch (INVITED) , 2006 .

[15]  Rainer Waser,et al.  Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise , 2010 .

[16]  T. Hasegawa,et al.  Nanometer-scale switches using copper sulfide , 2003 .

[17]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[18]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.