Fingerprint recognition using model-based density map

Utilizing more information other than minutiae is much helpful for large-scale fingerprint recognition applications. In this paper, we proposed a polynomial model to approximate the density map of fingerprints and used the model's parameters as a novel kind of feature for fingerprint representation. Thus, the density information can be utilized into the matching stage with a low additional storage cost. A decision-level fusion scheme is further used to combine the density map matching with conventional minutiae-based matching and experimental results showed a much better performance than using single minutiae-based matching.

[1]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[2]  TicoMarius,et al.  Fingerprint Matching Using an Orientation-Based Minutia Descriptor , 2003 .

[3]  Anil K. Jain,et al.  On-line fingerprint verification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[4]  Sharath Pankanti,et al.  Filterbank-based fingerprint matching , 2000, IEEE Trans. Image Process..

[5]  Sharath Pankanti,et al.  On the individuality fingerprints , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Riccardo Rovatti,et al.  Fingerprint ridge distance computation methodologies , 2000, Pattern Recognit..

[7]  Anil K. Jain,et al.  Combining multiple matchers for a high security fingerprint verification system , 1999, Pattern Recognit. Lett..

[8]  D. J. Farlie,et al.  Prediction and Regulation by Linear Least-Square Methods , 1964 .

[9]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[10]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Lyal B. Harris November , 1890, The Hospital.

[12]  Bir Bhanu,et al.  On the fundamental performance for fingerprint matching , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[13]  James A. McHugh,et al.  Automated fingerprint recognition using structural matching , 1990, Pattern Recognit..

[14]  Dario Maio,et al.  Synthetic fingerprint-database generation , 2002, Object recognition supported by user interaction for service robots.

[15]  David Zhang,et al.  Automated Biometrics: Technologies and Systems , 2000 .

[16]  George C. Stockman,et al.  Matching Images to Models for Registration and Object Detection via Clustering , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Anil K. Jain,et al.  Decision-Level Fusion in Fingerprint Verification , 2001, Multiple Classifier Systems.

[18]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[19]  Anil K. Jain,et al.  Fingerprint Image Enhancement: Algorithm and Performance Evaluation , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Andrew Beng Jin Teoh,et al.  An efficient fingerprint verification system using integrated wavelet and Fourier-Mellin invariant transform , 2004, Image Vis. Comput..

[21]  Lawrence O'Gorman,et al.  An approach to fingerprint filter design , 1989, Pattern Recognit..

[22]  Jie Zhou,et al.  A model-based method for the computation of fingerprints' orientation field , 2004, IEEE Transactions on Image Processing.

[23]  Anil K. Jain,et al.  A Real-Time Matching System for Large Fingerprint Databases , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  T. Pavlidis A thinning algorithm for discrete binary images , 1980 .

[25]  Arun Ross,et al.  A hybrid fingerprint matcher , 2002, Object recognition supported by user interaction for service robots.