A hyperbolic geometric flow for evolving films and foams

Simulating the behavior of soap films and foams is a challenging task. A direct numerical simulation of films and foams via the Navier-Stokes equations is still computationally too expensive. We propose an alternative formulation inspired by geometric flow. Our model exploits the fact, according to Plateau's laws, that the steady state of a film is a union of constant mean curvature surfaces and minimal surfaces. Such surfaces are also well known as the steady state solutions of certain curvature flows. We show a link between the Navier-Stokes equations and a recent variant of mean curvature flow, called hyperbolic mean curvature flow, under the assumption of constant air pressure per enclosed region. Instead of using hyperbolic mean curvature flow as is, we propose to replace curvature by the gradient of the surface area functional. This formulation enables us to robustly handle non-manifold configurations; such junctions connecting multiple films are intractable with the traditional formulation using curvature. We also add explicit volume preservation to hyperbolic mean curvature flow, which in fact corresponds to the pressure term of the Navier-Stokes equations. Our method is simple, fast, robust, and consistent with Plateau's laws, which are all due to our reformulation of film dynamics as a geometric flow.

[1]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[2]  Frank Morgan,et al.  Proof of the Double Bubble Conjecture , 2000, Am. Math. Mon..

[3]  Michael Hutchings,et al.  Proof of the Double Bubble Conjecture , 2002 .

[4]  Michael Struwe,et al.  Plateau's problem and the calculus of variations , 1989 .

[5]  Ronald Fedkiw,et al.  A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics , 2013, SCA '13.

[6]  Roman Durikovic Animation of Soap Bubble Dynamics, Cluster Formation and Collision , 2001, Comput. Graph. Forum.

[7]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[8]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[9]  John Argyris,et al.  A general method for the shape finding of lightweight tension structures , 1974 .

[10]  John M. Sullivan,et al.  OPEN PROBLEMS IN SOAP BUBBLE GEOMETRY , 1996 .

[11]  Eitan Grinspun,et al.  Multimaterial mesh-based surface tracking , 2014, ACM Trans. Graph..

[12]  Roman urikovič Animation of Soap Bubble Dynamics, Cluster Formation and Collision , 2001 .

[13]  J. Douglas Solution of the problem of Plateau , 1931 .

[14]  V. Rich Personal communication , 1989, Nature.

[15]  Greg Huber,et al.  Fluid-membrane tethers: minimal surfaces and elastic boundary layers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Liu Kefeng,et al.  Hyperbolic mean curvature flow: evolution of plane curves , 2009 .

[17]  M. Berger,et al.  Differential Geometry: Manifolds, Curves, and Surfaces , 1987 .

[18]  C. Isenberg,et al.  The Science of Soap Films and Soap Bubbles , 1978 .

[19]  Jenny Harrison,et al.  Solution of Plateau's Problem , 2011 .

[20]  Eitan Grinspun,et al.  Double bubbles sans toil and trouble , 2015, ACM Trans. Graph..

[21]  L. Mahadevan,et al.  Minimal surfaces bounded by elastic lines , 2011, Proceedings of the Royal Society A.

[22]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes , 2014, IEEE Transactions on Visualization and Computer Graphics.

[23]  Huamin Wang,et al.  A Deformable Surface Model for Real-Time Water Drop Animation , 2012, IEEE Transactions on Visualization and Computer Graphics.

[24]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, ACM Trans. Graph..

[25]  J. Taylor,et al.  The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces , 1976 .

[26]  Jun-Hai Yong,et al.  Simulation of bubbles , 2006, SCA '06.

[27]  Huamin Wang,et al.  Animating bubble interactions in a liquid foam , 2012, ACM Trans. Graph..

[28]  L. Ambrosio,et al.  REGULARITY THEORY FOR MASS-MINIMIZING CURRENTS ( AFTER ALMGREN-DE LELLIS-SPADARO ) , 2015 .

[29]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[30]  Chun-lei He,et al.  Hyperbolic Mean Curvature Flow , 2010, 1004.2754.

[31]  Shing-Tung Yau,et al.  Review of geometry and analysis , 2000 .

[32]  Luca Lussardi,et al.  Solution of the Kirchhoff–Plateau Problem , 2016, J. Nonlinear Sci..

[33]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[34]  J. S. Brew,et al.  Computational form‐finding of tension membrane structures—Non‐finite element approaches: Part 1. Use of cubic splines in finding minimal surface membranes , 2003 .

[35]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[36]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes. , 2012, IEEE transactions on visualization and computer graphics.

[37]  Miguel A. Otaduy,et al.  Computational Design and Automated Fabrication of Kirchho-Plateau Surfaces , 2017 .

[38]  Richard Courant,et al.  Plateau’s Problem , 1950 .

[39]  Seiro Omata,et al.  A variational method for multiphase volume-preserving interface motions , 2014, J. Comput. Appl. Math..

[40]  Caiming Zhang,et al.  Robust modeling of constant mean curvature surfaces , 2012, ACM Trans. Graph..

[41]  J. Sethian,et al.  Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams , 2013, Science.

[42]  Eitan Grinspun,et al.  Use of Fast Multipole to Accelerate Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams , 2015 .

[43]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[44]  Carlo Mantegazza,et al.  Lecture Notes on Mean Curvature Flow , 2011 .

[45]  Konrad Polthier,et al.  Discrete Constant Mean Curvature Surfaces and Their Index (離散可積分系の研究の進展--超離散化・量子化) , 2001 .

[46]  F. Almgren,et al.  The Geometry of Soap Films and Soap Bubbles , 1976 .

[47]  Daniel Harris,et al.  Partial coalescence of soap bubbles , 2015 .

[48]  Chang-Hun Kim,et al.  Bubbles alive , 2008, ACM Trans. Graph..

[49]  Daniele Panozzo,et al.  LIBIGL: A C++ library for geometry processing without a mesh data structure , 2014 .

[50]  Rafael López,et al.  Constant Mean Curvature Surfaces with Boundary , 2013 .

[51]  Philippe G. LeFloch,et al.  The hyperbolic mean curvature flow , 2007, 0712.0091.

[52]  Jenny Harrison,et al.  Plateau's Problem: What's Next , 2015, 1509.03797.

[53]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[54]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[55]  De-Xing Kong,et al.  HYPERBOLIC MEAN CURVATURE FLOW: EVOLUTION OF PLANE CURVES , 2008, 0803.0408.

[56]  Matthias Müller,et al.  Fast and robust tracking of fluid surfaces , 2009, SCA '09.