Second-law-like inequalities with information and their interpretations

In a thermodynamic process with measurement and feedback, the second law of thermodynamics is no longer valid. In its place, various second-law-like inequalities have been advanced that each incorporate a distinct additional term accounting for the information gathered through measurement. We quantitatively compare a number of these information measures using an analytically tractable model for the feedback cooling of a Brownian particle. We find that the information measures form a hierarchy that reveals a web of interconnections. To untangle their relationships, we address the origins of the information, arguing that each information measure represents the minimum thermodynamic cost to acquire that information through a separate, distinct measurement protocol.

[1]  Andreas Engel,et al.  On the energetics of information exchange , 2014, 1401.2270.

[2]  Jordan M. Horowitz,et al.  Optimizing Non-ergodic Feedback Engines , 2013, 1305.6281.

[3]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[4]  Takahiro Sagawa,et al.  Role of mutual information in entropy production under information exchanges , 2013, 1307.6092.

[5]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Jordan M. Horowitz,et al.  Thermodynamics with Continuous Information Flow , 2014, 1402.3276.

[7]  Andre C. Barato,et al.  Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation , 2014 .

[8]  G. A. Barnard,et al.  Transmission of Information: A Statistical Theory of Communications. , 1961 .

[9]  E. Lutz,et al.  Information free energy for nonequilibrium states , 2012, 1201.3888.

[10]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[11]  R. E. Mortensen,et al.  Filtering for stochastic processes with applications to guidance , 1972 .

[12]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[13]  Jordan M. Horowitz,et al.  Thermodynamic reversibility in feedback processes , 2011, 1104.0332.

[14]  Armen E. Allahverdyan,et al.  Thermodynamic efficiency of information and heat flow , 2009, 0907.3320.

[15]  Youhei Fujitani,et al.  Jarzynski Equality Modified in the Linear Feedback System , 2010 .

[16]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[17]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[18]  Hao Ge Time reversibility and nonequilibrium thermodynamics of second-order stochastic processes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  U. Seifert,et al.  Extracting work from a single heat bath through feedback , 2011, 1102.3826.

[20]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[21]  T. Munakata,et al.  Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited , 2012, 1202.0974.

[22]  W. Wonham On the Separation Theorem of Stochastic Control , 1968 .

[23]  Masahito Ueda,et al.  Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. , 2012, Physical review letters.

[24]  A. C. Barato,et al.  Unifying three perspectives on information processing in stochastic thermodynamics. , 2013, Physical review letters.

[25]  T. Tomé,et al.  Entropy production in irreversible systems described by a Fokker-Planck equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  S. Ciliberto,et al.  Fluctuations of the total entropy production in stochastic systems , 2007, 0711.2388.

[27]  Takahiro Sagawa,et al.  Fluctuation theorem for partially masked nonequilibrium dynamics. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Jordan M Horowitz,et al.  Imitating chemical motors with optimal information motors. , 2012, Physical review letters.

[29]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[30]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[31]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Robert M. Fano,et al.  Transmission of Information, A Statistical Theory of Communications , 1965 .

[33]  Richard E Spinney,et al.  Entropy production in full phase space for continuous stochastic dynamics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Filipe Tostevin,et al.  Mutual information in time-varying biochemical systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  M. Ponmurugan Generalized detailed fluctuation theorem under nonequilibrium feedback control. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[37]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[38]  Y. Fujitani,et al.  One-Dimensional Shift of a Brownian Particle under the Feedback Control , 2009 .

[39]  T. Sagawa Hamiltonian Derivations of the Generalized Jarzynski Equalities under Feedback Control , 2011, 1105.5888.

[40]  Massimiliano Esposito,et al.  Mutual entropy production in bipartite systems , 2013, 1307.4728.

[41]  A. C. Barato,et al.  Information-theoretic vs. thermodynamic entropy production in autonomous sensory networks , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[43]  Udo Seifert,et al.  Rate of Mutual Information Between Coarse-Grained Non-Markovian Variables , 2013, 1306.1698.

[44]  H. Risken Fokker-Planck Equation , 1984 .

[45]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[46]  M L Rosinberg,et al.  Entropy production and fluctuation theorems for Langevin processes under continuous non-Markovian feedback control. , 2014, Physical review letters.

[47]  Hong Qian,et al.  Fluctuation theorems for a molecular refrigerator. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[49]  Christopher Jarzynski,et al.  Maxwell's refrigerator: an exactly solvable model. , 2013, Physical review letters.

[50]  Udo Seifert,et al.  Thermodynamics of genuine nonequilibrium states under feedback control. , 2011, Physical review letters.

[51]  S Ciliberto,et al.  Nonequilibrium fluctuations in a resistor. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  C. Jarzynski,et al.  Exactly solvable model illustrating far-from-equilibrium predictions , 1999 .

[53]  Nigel J. Newton,et al.  Information and Entropy Flow in the Kalman–Bucy Filter , 2005 .

[54]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[55]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[56]  Sosuke Ito,et al.  Information thermodynamics on causal networks. , 2013, Physical review letters.

[57]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[58]  M. Feito,et al.  Thermodynamics of feedback controlled systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Harvey S. Leff,et al.  Maxwell's Demon 2 , 1990 .

[60]  Henrik Sandberg,et al.  Maximum work extraction and implementation costs for nonequilibrium Maxwell's demons. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[62]  T. Munakata,et al.  Stochastic resonance in the FitzHugh-Nagumo model from a dynamic mutual information point of view , 2006 .

[63]  Udo Seifert,et al.  An autonomous and reversible Maxwell's demon , 2013, 1302.3089.

[64]  M. L. Rosinberg,et al.  Feedback cooling, measurement errors, and entropy production , 2013 .