Geodetic Topological Cycles in Locally Finite Graphs

We prove that the topological cycle space C(G) of a locally finite graph G is generated by its geodetic topological circles. We further show that, although the finite cycles of G generate C(G), its finite geodetic cycles need not generate C(G).

[1]  Henning Bruhn,et al.  The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits , 2004, J. Comb. Theory, Ser. B.

[2]  W. T. Tutte How to Draw a Graph , 1963 .

[3]  Agelos Georgakopoulos,et al.  Graph topologies induced by edge lengths , 2009, Discret. Math..

[4]  Reinhard Diestel,et al.  On Infinite Cycles I , 2004, Comb..

[5]  Reinhard Diestel,et al.  Graph-theoretical versus topological ends of graphs , 2003, J. Comb. Theory, Ser. B.

[6]  H. Freudenthal,et al.  Über die Enden topologischer Räume und Gruppen , 1931 .

[7]  Reinhard Diestel,et al.  On Infinite Cycles II , 2004, Comb..

[8]  Henning Bruhn,et al.  Hamilton connectivity of line graphs and claw-free graphs , 2005 .

[9]  Henning Bruhn,et al.  Duality in Infinite Graphs , 2006, Combinatorics, Probability and Computing.

[10]  D. Koenig Theorie Der Endlichen Und Unendlichen Graphen , 1965 .

[11]  Maya Jakobine Stein,et al.  MacLane's planarity criterion for locally finite graphs , 2006, J. Comb. Theory, Ser. B.

[12]  Reinhard Diestel,et al.  Topological paths, cycles and spanning trees in infinite graphs , 2004, Eur. J. Comb..

[13]  Reinhard Diestel,et al.  The Cycle Space of an Infinite Graph , 2005, Combinatorics, Probability and Computing.

[14]  Antoine Vella,et al.  A Fundamentally Topological Perspective on Graph Theory , 2005 .

[15]  Reinhard Diestel,et al.  End spaces and spanning trees , 2006, J. Comb. Theory, Ser. B.

[16]  A. Blumberg BASIC TOPOLOGY , 2002 .

[17]  Agelos Georgakopoulos,et al.  Topological Circles and Euler Tours in Locally Finite Graphs , 2009, Electron. J. Comb..