Stability Analysis and Implementation of a Decentralized Formation Control Strategy for Unmanned Vehicles

This paper presents a new methodology for solving the multivehicle formation control problem. It employs a unique extension-decomposition-aggregation scheme to transform the overall complex formation control problem into a group of subproblems, which work via boundary interactions or disturbances. Thus, it is proved that the overall formation system is exponentially stable in the sense of Lyapunov, if all the individual augmented subsystems (IASs) are stable. Linear matrix inequality-based H∞ control methodology is employed to design the decentralized formation controllers to reject the impact of the formation changes being treated as boundary disturbances and guarantee the stability of all the IASs, consequently maintaining the stability of the overall formation system. Simulation studies are performed to verify the stability, performance, and effectiveness of the proposed strategy.

[1]  Kar-Han Tan,et al.  Virtual structures for high-precision cooperative mobile robotic control , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[2]  George W. Irwin,et al.  Novel decentralised formation control for unmanned vehicles , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[3]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[4]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[5]  A. Stephen Morse,et al.  Decentralized control of linear multivariable systems , 1976, Autom..

[6]  Murat Arcak,et al.  Passivity as a Design Tool for Group Coordination , 2007, IEEE Transactions on Automatic Control.

[7]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[8]  Sk Katti Decentralized control of linear multivariable systems , 1981 .

[9]  Dragoslav D. Šiljak,et al.  Decentralized control of complex systems , 2012 .

[10]  R. Beard,et al.  Constellation Templates: An Approach to Autonomous Formation Flying , 1998 .

[11]  D. Siljak,et al.  Robust stabilization of nonlinear systems: The LMI approach , 2000 .

[12]  Seiichi Shin,et al.  Decentralized Control of Autonomous Swarm Systems Using Artificial Potential Functions: Analytical Design Guidelines , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[13]  Soon-Jo Chung,et al.  Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems , 2007, IEEE Transactions on Robotics.

[14]  Randal W. Beard,et al.  A decentralized scheme for spacecraft formation flying via the virtual structure approach , 2003, Proceedings of the 2003 American Control Conference, 2003..

[15]  Rodney Teo,et al.  Decentralized overlapping control of a formation of unmanned aerial vehicles , 2004, Autom..

[16]  X Yang,et al.  Parametrisation construction frame of lifting scheme , 2011 .

[17]  Vijay Kumar,et al.  Controlling formations of multiple mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[18]  Guangming Xie,et al.  Leader-following formation control of multiple mobile vehicles , 2007 .

[19]  T.I. Fossen,et al.  Nonlinear formation control of marine craft with experimental results , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[20]  David A. Schoenwald,et al.  Decentralized control of cooperative robotic vehicles: theory and application , 2002, IEEE Trans. Robotics Autom..

[21]  Michael Defoort,et al.  Sliding-Mode Formation Control for Cooperative Autonomous Mobile Robots , 2008, IEEE Transactions on Industrial Electronics.

[22]  Dragoslav D. Šiljak,et al.  Large-Scale Dynamic Systems: Stability and Structure , 1978 .

[23]  K. D. Do,et al.  Bounded Controllers for Formation Stabilization of Mobile Agents With Limited Sensing Ranges , 2007, IEEE Transactions on Automatic Control.

[24]  Daizhan Cheng,et al.  Lyapunov-Based Approach to Multiagent Systems With Switching Jointly Connected Interconnection , 2007, IEEE Transactions on Automatic Control.

[25]  Jingqing Han,et al.  From PID to Active Disturbance Rejection Control , 2009, IEEE Trans. Ind. Electron..

[26]  Kang Li,et al.  A decentralised control strategy for formation flight of unmanned aerial vehicles , 2012, Proceedings of 2012 UKACC International Conference on Control.

[27]  Xiaoming Hu,et al.  A control Lyapunov function approach to multiagent coordination , 2002, IEEE Trans. Robotics Autom..

[28]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[29]  Sergio Monteiro,et al.  Attractor dynamics approach to formation control: theory and application , 2010, Auton. Robots.

[30]  George W. Irwin,et al.  Application of wireless network control to a two inverted pendulum system , 2011 .

[31]  Richard M. Murray,et al.  Recent Research in Cooperative Control of Multivehicle Systems , 2007 .

[32]  Guanrong Chen,et al.  Formation control of networked multi-agent systems , 2010 .

[33]  Lynne E. Parker,et al.  Guest editorial advances in multirobot systems , 2002, IEEE Trans. Robotics Autom..

[34]  Tucker R. Balch,et al.  Social potentials for scalable multi-robot formations , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[35]  Randal W. Beard,et al.  A decentralized approach to formation maneuvers , 2003, IEEE Trans. Robotics Autom..

[36]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[37]  Dongbing Gu,et al.  A model predictive controller for robots to follow a virtual leader , 2009, Robotica.

[38]  Lynne E. Parker,et al.  Editorial: Advances in Multi-Robot Systems , 2002 .

[39]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[40]  Jean-Jacques E. Slotine,et al.  A theoretical study of different leader roles in networks , 2006, IEEE Transactions on Automatic Control.