Evolution of the Bipolar Mating System of the Mushroom Coprinellus disseminatus From Its Tetrapolar Ancestors Involves Loss of Mating-Type-Specific Pheromone Receptor Function

Mating incompatibility in mushroom fungi is controlled by the mating-type loci. In tetrapolar species, two unlinked mating-type loci exist (A and B), whereas in bipolar species there is only one locus. The A and B mating-type loci encode homeodomain transcription factors and pheromones and pheromone receptors, respectively. Most mushroom species have a tetrapolar mating system, but numerous transitions to bipolar mating systems have occurred. Here we determined the genes controlling mating type in the bipolar mushroom Coprinellus disseminatus. Through positional cloning and degenerate PCR, we sequenced both the transcription factor and pheromone receptor mating-type gene homologs from C. disseminatus. Only the transcription factor genes segregate with mating type, discounting the hypothesis of genetic linkage between the A and B mating-type loci as the causal origin of bipolar mating behavior. The mating-type locus of C. disseminatus is similar to the A mating-type locus of the model species Coprinopsis cinerea and encodes two tightly linked pairs of homeodomain transcription factor genes. When transformed into C. cinerea, the C. disseminatus A and B homologs elicited sexual reactions like native mating-type genes. Although mating type in C. disseminatus is controlled by only the transcription factor genes, cellular functions appear to be conserved for both groups of genes.

[1]  D. Bao,et al.  Identification and linkage mapping of the genes for the putative homeodomain protein (hox1) and the putative pheromone receptor protein homologue (rcb1) in a bipolar basidiomycete, Pholiota nameko , 2005, Current Genetics.

[2]  L. Casselton,et al.  The Origin of Multiple B Mating Specificities in Coprinus cinereus , 2005, Genetics.

[3]  J. Heitman,et al.  Sex-Specific Homeodomain Proteins Sxi1α and Sxi2a Coordinately Regulate Sexual Development in Cryptococcus neoformans , 2005, Eukaryotic Cell.

[4]  C. Novotny,et al.  Regions in theZ5 mating gene ofSchizophyllum commune involved in Y-Z binding and recognition , 1996, Molecular and General Genetics MGG.

[5]  R. Vilgalys,et al.  The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. , 2004, Fungal genetics and biology : FG & B.

[6]  Stephen H. Bryant,et al.  CD-Search: protein domain annotations on the fly , 2004, Nucleic Acids Res..

[7]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[8]  M. Aebi,et al.  Role of peg formation in clamp cell fusion of homobasidiomycete fungi , 2004, Journal of basic microbiology.

[9]  R. Vilgalys,et al.  Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the A mating-type locus of mushroom fungi. , 2004, Fungal genetics and biology : FG & B.

[10]  Joseph Heitman,et al.  Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1alpha. , 2002, Genes & development.

[11]  J. Heitman,et al.  Mating-Type Locus of Cryptococcus neoformans: a Step in the Evolution of Sex Chromosomes , 2002, Eukaryotic Cell.

[12]  M. Aebi,et al.  Influence of activated A and B mating-type pathways on developmental processes in the basidiomycete Coprinus cinereus , 2002, Molecular Genetics and Genomics.

[13]  M. Aebi,et al.  The pab1 gene of Coprinus cinereus encodes a bifunctional protein for para‐aminobenzoic acid (PABA) synthesis: implications for the evolution of fused PABA synthases , 2002, Journal of basic microbiology.

[14]  K. Ko,et al.  Phylogeographic divergences of nuclear ITS sequences in Coprinus species sensu lato * * Paper presen , 2001 .

[15]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[16]  L. Vaillancourt,et al.  Changes in mate recognition through alterations of pheromones and receptors in the multisexual mushroom fungus Schizophyllum commune. , 2001, Genetics.

[17]  A. Brown,et al.  Mating in mushrooms: increasing the chances but prolonging the affair. , 2001, Trends in genetics : TIG.

[18]  P. Morrell,et al.  Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. , 2001, American journal of botany.

[19]  R. Vilgalys,et al.  The chromosomal region containing pab-1, mip, and the A mating type locus of the secondarily homothallic homobasidiomycete Coprinus bilanatus , 2001, Current Genetics.

[20]  Ichael,et al.  Analysis of Character Correlations Among Wood Decay Mechanisms , Mating Systems , and Substrate Ranges in Homobasidiomycetes , 2001 .

[21]  A. Brown,et al.  Self-compatible B mutants in coprinus with altered pheromone-receptor specificities. , 2000, Genetics.

[22]  L. Casselton,et al.  Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. , 2000, Genetics.

[23]  G. May,et al.  The signature of balancing selection: fungal mating compatibility gene evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Debuchy Internuclear recognition: A possible connection between euascomycetes and homobasidiomycetes. , 1999, Fungal genetics and biology : FG & B.

[25]  G. May,et al.  The divergence-homogenization duality in the evolution of the b1 mating type gene of Coprinus cinereus. , 1999, Molecular biology and evolution.

[26]  S. Dowell,et al.  A constitutively active G‐protein‐coupled receptor causes mating self‐compatibility in the mushroom Coprinus , 1999, The EMBO journal.

[27]  M. Berbee,et al.  Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Aebi,et al.  Rapid isolation of genes from an indexed genomic library of C. cinereus in a novel pab1+ cosmid. , 1999, Journal of microbiological methods.

[29]  Julio Rozas,et al.  DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis , 1999, Bioinform..

[30]  U. Kües,et al.  Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. , 1999, International review of cytology.

[31]  M. Aebi,et al.  The A mating type and blue light regulate all known differentiation processes in the basidiomycete Coprinus cinereus , 1998, Molecular and General Genetics MGG.

[32]  T. Kamada,et al.  Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. , 1998, Genetics.

[33]  F. Banuett Signalling in the Yeasts: An Informational Cascade with Links to the Filamentous Fungi , 1998, Microbiology and Molecular Biology Reviews.

[34]  J. Wessels,et al.  Positioning of nuclei in the secondary Mycelium of Schizophyllum commune in relation to differential gene expression. , 1998, Fungal genetics and biology : FG & B.

[35]  I. Connerton,et al.  A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. , 1998, Genetics.

[36]  L. Casselton,et al.  Molecular Genetics of Mating Recognition in Basidiomycete Fungi , 1998, Microbiology and Molecular Biology Reviews.

[37]  M. Aebi,et al.  Restriction enzyme-mediated DNA integration in Coprinus cinereus , 1997, Molecular and General Genetics MGG.

[38]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[39]  John F. Murphy,et al.  Diversity and local distribution of mating alleles in Marasmiellus praeacutus and Collybia subnuda (Basidiomycetes, Agaricales) , 1997 .

[40]  K. Nicholas,et al.  GeneDoc: Analysis and visualization of genetic variation , 1997 .

[41]  L. Casselton,et al.  Multiple versions of the A mating type locus of Coprinus cinereus are generated by three paralogous pairs of multiallelic homeobox genes. , 1996, Genetics.

[42]  J. Adachi,et al.  MOLPHY version 2.3 : programs for molecular phylogenetics based on maximum likelihood , 1996 .

[43]  G. May,et al.  Recombination and Variation at the A Mating-Type of Coprinus cinereus , 1995 .

[44]  B. Göttgens,et al.  An N-Terminal Dimerization Domain Permits Homeodomain Proteins To Choose Compatible Partners and Initiate Sexual Development in the Mushroom Coprinus cinereus. , 1995, The Plant cell.

[45]  U. Kües,et al.  A chimeric homeodomain protein causes self‐compatibility and constitutive sexual development in the mushroom Coprinus cinereus. , 1994, The EMBO journal.

[46]  G. Bakkeren,et al.  Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Masami Hasegawa,et al.  Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree , 1994 .

[48]  C. Boone,et al.  Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Mark Borodovsky,et al.  GENMARK: Parallel Gene Recognition for Both DNA Strands , 1993, Comput. Chem..

[50]  J. Kronstad,et al.  Construction of chimeric alleles with altered specificity at the b incompatibility locus of Ustilago maydis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[51]  U. Kües,et al.  Homeodomains and regulation of sexual development in basidiomycetes. , 1992, Trends in genetics : TIG.

[52]  S. Gaubatz,et al.  The combination of dissimilar alleles of the A alpha and A beta gene complexes, whose proteins contain homeo domain motifs, determines sexual development in the mushroom Coprinus cinereus. , 1992, Genes & development.

[53]  N L Kaplan,et al.  The coalescent process in models with selection and recombination. , 1988, Genetics.

[54]  Zhou Bing,et al.  Application of partial restriction procedure in both shotgun and non-random strategies for nucleotide sequencing. , 1988 .

[55]  Q. Li,et al.  Application of partial restriction procedure in both shotgun and non-random strategies for nucleotide sequencing. , 1988, Gene.

[56]  P. Pukkila,et al.  DNA‐mediated transformation of the basidiomycete Coprinus cinereus. , 1987, The EMBO journal.

[57]  M. Nei Molecular Evolutionary Genetics , 1987 .

[58]  P. Pukkila,et al.  Inheritance of DNA methylation in Coprinus cinereus , 1986, Molecular and cellular biology.

[59]  M. J. Lawrence,et al.  The population genetics of the self-incompatibility polymorphism in Papaver rhoeas. IV. The estimation of the number of alleles in a population , 1984, Heredity.

[60]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[61]  G. M. Butler Effects of growth-retarding environmental factors on growth kinetics and clamp connexion occurrence in the dikaryon of Coprinus disseminatus , 1981 .

[62]  C. Raper CONTROL OF DEVELOPMENT BY THE INCOMPATIBILITY SYSTEM IN BASIDIOMYCETES , 1978 .

[63]  J. Weijer Genetics of Sexuality in Higher Fungi , 1966 .

[64]  A. Ellingboe,et al.  THE GENETIC STRUCTURE OF THE INCOMPATIBILITY FACTORS OF SCHIZOPHYLLUM COMMUNE: THE A-FACTOR. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[65]  P. R. Day The Structure of the a Mating Type Locus in Coprinus Lagopus. , 1960, Genetics.

[66]  H. Whitehouse MULTIPLE‐ALLELOMORPH HETEROTHALLISM IN THE FUNGI , 1949 .

[67]  H. Cowles Researches on Fungi , 1911, Nature.