Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys

Symmetry breaking is a fundamental concept that prevails in many branches of physics1–5. In magnetic materials, broken inversion symmetry induces the Dzyaloshinskii–Moriya interaction (DMI), which results in fascinating physical behaviours6–14 with the potential for application in future spintronic devices15–17. Here, we report the observation of a bulk DMI in GdFeCo amorphous ferrimagnets. The DMI is found to increase linearly with an increasing thickness of the ferrimagnetic layer, which is a clear signature of the bulk nature of DMI. We also found that the DMI is independent of the interface between the heavy metal and ferrimagnetic layer. This bulk DMI is attributed to an asymmetric distribution of the elemental content in the GdFeCo layer, with spatial inversion symmetry broken throughout the layer. We expect that our experimental identification of a bulk DMI will open up additional possibilities to exploit this interaction in a wide range of materials.A composition gradient is found to provide the necessary structural inversion asymmetry for a bulk Dzyaloshinskii–Moriya interaction to manifest itself.

[1]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[2]  J. Siegel Biochemistry: Single-handed cooperation , 2001, Nature.

[3]  E. Dzialoshinskii,et al.  Thermodynamic Theory of " Weak " Ferromagnetism In Antiferromagnetic Substances , 2022 .

[4]  Y. Mokrousov,et al.  Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d-5d zigzag chains: Tight-binding model and ab initio calculations , 2014, 1406.0294.

[5]  Y. Nakatani,et al.  Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction , 2015, Nature Physics.

[6]  Clemens,et al.  Structural anisotropy in amorphous Fe-Tb thin films. , 1996, Physical review. B, Condensed matter.

[7]  M. Cinchetti,et al.  Engineered materials for all-optical helicity-dependent magnetic switching. , 2014, Nature materials.

[8]  Harris,et al.  Structural origins of magnetic anisotropy in sputtered amorphous Tb-Fe films. , 1992, Physical review letters.

[9]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[10]  Arata Tsukamoto,et al.  Crystallographically amorphous ferrimagnetic alloys: Comparing a localized atomistic spin model with experiments , 2011 .

[11]  B. Min,et al.  Universality of Dzyaloshinskii-Moriya interaction effect over domain-wall creep and flow regimes , 2016, Physical Review B.

[12]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[13]  J. H. Franken,et al.  Domain wall depinning governed by the spin Hall effect. , 2012, Nature materials.

[14]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[15]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[16]  T. Silva,et al.  Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films , 2015, Nature Physics.

[17]  C. You,et al.  Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems , 2015, Nature Communications.

[18]  L. Buda-Prejbeanu,et al.  Chirality-Induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures. , 2014, Physical review letters.

[19]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[20]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[21]  P. Anderson More is different. , 1972, Science.

[22]  H. Dürr,et al.  Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins , 2011, Nature.

[23]  Z. Li,et al.  Deviations from bulk behavior in TbFe(Co) thin films: Interfaces contribution in the biased composition , 2018, Physical Review Materials.

[24]  Kyung-Jin Lee,et al.  Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction , 2013, 1307.0984.

[25]  C. Hwang,et al.  Magnetic bubblecade memory based on chiral domain walls , 2015, Scientific Reports.

[26]  T. Ono,et al.  Chiral magnetic domain wall in ferrimagnetic GdFeCo wires , 2015 .

[27]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[28]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[29]  Y. Tokura,et al.  Real-Space Observation of Helical Spin Order , 2006, Science.

[30]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[31]  T. Ono,et al.  Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. , 2017, Nature materials.

[32]  J. Ellis Particle physics: Antimatter matters , 2003, Nature.