Resonant tunneling diodes: models and properties

The resonant tunneling diode (RTD) has been widely studied because of its importance in the field of nanoelectronic science and technology and its potential applications in very high speed/functionality devices and circuits. Even though much progress has been made in this regard, additional work is needed to realize the full potential of RTD's. As research on RTD's continues, we will try in this tutorial review to provide the reader with an overall and succinct picture of where we stand in this exciting field or research and to address the following questions: What makes RTD's so attractive? To what extent can RTD's be modeled for design purposes? What are the required and achievable device properties in terms of digital logic applications? To address these issues, we review the device operational principles, various modeling approaches, and major device properties. Comparisons among the various RTD physical models and major features of RTD's, resonant interband tunneling diodes, and Esaki tunnel diodes are presented. The tutorial and analysis provided in this paper may help the reader in becoming familiar with current research efforts, as well as to examine the important aspects in further RTD developments and their circuit applications.

[1]  Pinaki Mazumder,et al.  Digital circuit applications of resonant tunneling devices , 1998, Proc. IEEE.

[2]  George I. Haddad,et al.  Self-Consistent Scattering Calculation of Resonant Tunneling Diode Characteristics , 1998, VLSI Design.

[3]  J.P.A. van der Wagt,et al.  RTD/HFET low standby power SRAM gain cell , 1998, IEEE Electron Device Letters.

[4]  中島 謙,et al.  A 4-level Storage 4Gb DRAM , 1997 .

[5]  M. Reddy,et al.  Monolithic Schottky-collector resonant tunnel diode oscillator arrays to 650 GHz , 1997, IEEE Electron Device Letters.

[6]  Gerhard Klimeck,et al.  Quantitative simulation of a resonant tunneling diode , 1997, Journal of Applied Physics.

[7]  James C. Ellenbogen,et al.  Overview of nanoelectronic devices , 1997, Proc. IEEE.

[8]  T. Matano,et al.  A 4-level storage 4 Gb DRAM , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[9]  H. Yasuda Multimedia impact on devices in the 21st century , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[10]  Gary H. Bernstein,et al.  12 GHz clocked operation of ultralow power interband resonant tunneling diode pipelined logic gates , 1997, IEEE J. Solid State Circuits.

[11]  A. Seabaugh,et al.  RTD/HFET low standby power SRAM gain cell , 1996, International Electron Devices Meeting. Technical Digest.

[12]  Pinaki Mazumder,et al.  Compact multiple-valued multiplexers using negative differential resistance devices , 1996, IEEE J. Solid State Circuits.

[13]  Gerhard Klimeck,et al.  Experimentally verified quantum device simulations based on multiband models, Hartree self-consistency, and scattering assisted charging , 1996, 1996 54th Annual Device Research Conference Digest.

[14]  T. Waho,et al.  A novel multiple-valued logic gate using resonant tunneling devices , 1996, IEEE Electron Device Letters.

[15]  H.J. De Los Santos,et al.  Physics-based RTD current-voltage equation , 1996, IEEE Electron Device Letters.

[16]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[17]  Boykin,et al.  Incorporation of incompleteness in the k , 1995, Physical review. B, Condensed matter.

[18]  Gerhard Klimeck NanoElectronic MOdeling: NEMO , 1995 .

[19]  Gerhard Klimeck,et al.  Nano electronic modelling (NEMO) , 1995, 1995 53rd Annual Device Research Conference Digest.

[20]  M. Reddy,et al.  Fabrication and dc, microwave characteristics of submicron Schottky‐collector AlAs/In0.53Ga0.47As/InP resonant tunneling diodes , 1995 .

[21]  H. Grubin Density Matrix Simulations of Semiconductor Devices , 1995 .

[22]  Pinaki Mazumder,et al.  Device and circuit simulation of quantum electronic devices , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  H. Mizuta,et al.  Variable‐area resonant tunneling diodes using implanted in‐plane gates , 1994 .

[24]  G. Haddad,et al.  An Accurate Re-formulation of the Wigner Function Method for Quantum Transport Modeling , 1994 .

[25]  H. Grubin,et al.  Modeling of Quantum Transport in Semiconductor Devices , 1994 .

[26]  Meir,et al.  Time-dependent transport in interacting and noninteracting resonant-tunneling systems. , 1994, Physical review. B, Condensed matter.

[27]  H. Liu,et al.  Chapter 6 – High-Frequency Resonant-Tunneling Devices , 1994 .

[28]  T. Tanamoto,et al.  Improved optical model for resonant tunneling diode , 1993 .

[29]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[30]  F. Buot,et al.  Mesoscopic physics and nanoelectronics: nanoscience and nanotechnology , 1993 .

[31]  R. Mains,et al.  A self‐consistent model of Γ‐X mixing in GaAs/AlAs/GaAs quantum well structures using the quantum transmitting boundary method , 1993 .

[32]  D. S. Pan,et al.  A microwave measurement technique for characterizing the I-V relationship for negative differential conductance devices , 1993 .

[33]  R. Tsu Silicon-based quantum wells , 1993, Nature.

[34]  Peter M. Asbeck,et al.  Analysis of heterojunction bipolar transistor/resonant tunneling diode logic for low-power and high-speed digital applications , 1993 .

[35]  Horst Kibbel,et al.  91 GHz SiGe HBTs grown by MBE , 1993 .

[36]  M. Willander,et al.  Evanescent channels in calculation of phonon‐assisted tunneling spectrum of a semiconductor tunneling structure , 1993 .

[37]  Meir,et al.  Time-dependent transport through a mesoscopic structure. , 1993, Physical review. B, Condensed matter.

[38]  Roblin,et al.  Three-dimensional scattering-assisted tunneling in resonant-tunneling diodes. , 1993, Physical review. B, Condensed matter.

[39]  S. Teitsworth,et al.  Theory of localized phonon modes and their effects on electron tunneling in double‐barrier structures , 1992 .

[40]  Jianing Sun,et al.  C-V and I-V characteristics of quantum well varactors , 1992 .

[41]  Su,et al.  Single-electron tunneling in nanometer-scale double-barrier heterostructure devices. , 1992, Physical review. B, Condensed matter.

[42]  Law,et al.  Single-electron tunneling and Coulomb charging effects in aysmmetric double-barrier resonant-tunneling diodes. , 1992, Physical review. B, Condensed matter.

[43]  Datta,et al.  Nonequilibrium Green's-function method applied to double-barrier resonant-tunneling diodes. , 1992, Physical review. B, Condensed matter.

[44]  Single electron tunnelling through a donor state in a gated resonant tunnelling device , 1992 .

[45]  E. Anda,et al.  The role of inelastic scattering in resonant tunnelling heterostructures , 1991 .

[46]  A. Jauho,et al.  Self‐consistent model for two‐dimensional accumulation layer states in resonant tunneling devices , 1991 .

[47]  Bernard S. Meyerson,et al.  Electron resonant tunneling in Si/SiGe double barrier diodes , 1991 .

[48]  H. Ahmed Nanostructure fabrication , 1991, Proc. IEEE.

[49]  T. C. McGill,et al.  Oscillations up to 712 GHz in InAs/AlSb resonant‐tunneling diodes , 1991 .

[50]  Kumar,et al.  Resonant tunneling in a quasi-one-dimensional wire: Influence of evanescent modes. , 1991, Physical review. B, Condensed matter.

[51]  E V Anda,et al.  The role of inelastic scattering in resonant tunnelling heterostructures , 1991 .

[52]  Konstantin K. Likharev,et al.  Single Electronics: A Correlated Transfer of Single Electrons and Cooper Pairs in Systems of Small Tunnel Junctions , 1991 .

[53]  R. Pease,et al.  Limits of nano-gate fabrication , 1991, Proc. IEEE.

[54]  Asymmetric resonant tunnelling diodes as microwave detectors , 1990 .

[55]  C. Webb,et al.  Heterostructure p‐n junction tunnel diodes , 1990 .

[56]  William R. Frensley,et al.  Boundary conditions for open quantum systems driven far from equilibrium , 1990 .

[57]  K. Jensen,et al.  The effects of scattering on current‐voltage characteristics, transient response, and particle trajectories in the numerical simulation of resonant tunneling diodes , 1990 .

[58]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[59]  S. Iyer,et al.  Resonant tunneling of holes through silicon barriers , 1990 .

[60]  George I. Haddad,et al.  The bound-state resonant tunneling transistor (BSRTT): Fabrication, D.C. I–V characteristics and high-frequency properties , 1990 .

[61]  W. I. Wang,et al.  Interband tunneling in polytype GaSb/AlSb/InAs heterostructures , 1989 .

[62]  F. Chevoir,et al.  Calculation of phonon-assisted tunneling and valley current in a double-barrier diode , 1989 .

[63]  Datta Steady-state quantum kinetic equation. , 1989, Physical review. B, Condensed matter.

[64]  T. C. McGill,et al.  New negative differential resistance device based on resonant interband tunneling , 1989 .

[65]  J.-F. Luy,et al.  Si/SiGe resonant tunnelling devices separated by surrounding polysilicon , 1989 .

[66]  Cai,et al.  Model of phonon-associated electron tunneling through a semiconductor double barrier. , 1989, Physical review letters.

[67]  Kang L. Wang,et al.  Γ‐ and X‐state influences on resonant tunneling current in single‐ and double‐barrier GaAs/AlAs structures , 1989 .

[68]  J. Xu,et al.  Resonant interband tunnel diodes , 1989 .

[69]  George I. Haddad,et al.  Wigner function modeling of resonant tunneling diodes with high peak‐to‐valley ratios , 1988 .

[70]  A new triple-well resonant tunneling diode with controllable double-negative resistance , 1988 .

[71]  Clifton G. Fonstad,et al.  Pseudomorphic In0.53Ga0.47As/AlAs/InAs resonant tunneling diodes with peak‐to‐valley current ratios of 30 at room temperature , 1988 .

[72]  H. Ohnishi,et al.  Resonant-Tunneling Transistors Using InGaAs-Based Materials , 1988, Other Conferences.

[73]  D. C. Houghton,et al.  Resonant tunneling in Si/Si1−xGex double‐barrier structures , 1988 .

[74]  A. Kriman,et al.  Quantum tunneling properties from a Wigner function study , 1988 .

[75]  A. E. Wetsel,et al.  Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. , 1988, Physical review letters.

[76]  W. Frensley,et al.  Wigner-function model of a resonant-tunneling semiconductor device. , 1987, Physical review. B, Condensed matter.

[77]  S. Datta,et al.  Importance of space-charge effects in resonant tunneling devices , 1987 .

[78]  Gerald D. Mahan,et al.  Quantum transport equation for electric and magnetic fields , 1987 .

[79]  David E. Miller,et al.  Quantum Statistical Mechanics , 2002 .

[80]  J. Schulman Ga1−xAlxAs‐Ga1−yAlyAs‐GaAs double‐barrier structures , 1986 .

[81]  Naoki Yokoyama,et al.  Self‐consistent analysis of resonant tunneling current , 1986 .

[82]  G. Bastard,et al.  Electronic states in semiconductor heterostructures , 1986 .

[83]  Darryl D. Coon,et al.  Frequency limit of double barrier resonant tunneling oscillators , 1986 .

[84]  Hiroshi Imamoto,et al.  Observation of resonant tunneling in AlGaAs/GaAs triple barrier diodes , 1986 .

[85]  M. Altarelli Band Structure, Impurities and Excitons in Superlattices , 1986 .

[86]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[87]  Lee,et al.  Effect of inelastic processes on resonant tunneling in one dimension. , 1985, Physical review letters.

[88]  P. Vogl,et al.  A Semi-empirical tight-binding theory of the electronic structure of semiconductors†☆ , 1983 .

[89]  G. Roach,et al.  Green's Functions , 1982 .

[90]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[91]  L. Esaki,et al.  Tunneling in a finite superlattice , 1973 .

[92]  R. Landauer Electrical resistance of disordered one-dimensional lattices , 1970 .

[93]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[94]  E. Kane Chapter 3 The k •p Method , 1966 .

[95]  L. Keldysh Diagram technique for nonequilibrium processes , 1964 .

[96]  R. Hall,et al.  Tunnel Diodes , 1960, Nature.

[97]  E. GWYNNE JONES,et al.  Nuclear Structure , 1932, Nature.