Aggregation and ecotoxicity of CeO₂ nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength.

[1]  Colin R. Janssen,et al.  Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. , 2010, Chemosphere.

[2]  Enda Cummins,et al.  Nano-Scale Pollutants: Fate in Irish Surface and Drinking Water Regulatory Systems , 2010 .

[3]  Pedro J J Alvarez,et al.  Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. , 2010, Environmental science & technology.

[4]  Jamie R. Lead,et al.  Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater , 2010 .

[5]  Hongtao Wang,et al.  Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. , 2010, Environmental science & technology.

[6]  Robert Landsiedel,et al.  Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. , 2009, Chemosphere.

[7]  Colin R. Janssen,et al.  Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. , 2009, Environmental science & technology.

[8]  Yu Wang,et al.  Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. , 2009, Environmental science & technology.

[9]  Nathalie Tufenkji,et al.  Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. , 2009, Environmental science & technology.

[10]  Jamie R Lead,et al.  Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. , 2008, The Science of the total environment.

[11]  Mark Crane,et al.  Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles , 2008, Ecotoxicology.

[12]  Mark Crane,et al.  The ecotoxicology and chemistry of manufactured nanoparticles , 2008, Ecotoxicology.

[13]  Menachem Elimelech,et al.  Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. , 2007, Journal of colloid and interface science.

[14]  S. Sander,et al.  Investigation of interparticle forces in natural waters: effects of adsorbed humic acids on iron oxide and alumina surface properties. , 2004, Environmental science & technology.

[15]  Colin R. Janssen,et al.  Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata , 2003, Environmental toxicology and chemistry.

[16]  H. Walker,et al.  Stability of particle flocs upon addition of natural organic matter under quiescent conditions. , 2001, Water research.

[17]  C. O'melia,et al.  NATURAL ORGANIC MATTER AT OXIDE/WATER INTERFACES : COMPLEXATION AND CONFORMATION , 1999 .

[18]  I. García,et al.  Physico-chemical properties of the soil-saturation extracts: estimation from electrical conductivity , 1999 .

[19]  J. McCarthy,et al.  Using reverse osmosis to obtain organic matter from surface and ground waters , 1995 .

[20]  E. Perdue,et al.  Isolation of dissolved organic matter from the suwannee river using reverse osmosis , 1990 .

[21]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[22]  H. Akaike A new look at the statistical model identification , 1974 .

[23]  M. Mortimer,et al.  Ecotoxicity of nanoparticles of CuO and ZnO in natural water. , 2010, Environmental pollution.

[24]  Jae-Hong Kim,et al.  Natural organic matter stabilizes carbon nanotubes in the aqueous phase. , 2007, Environmental science & technology.

[25]  E. M. Thurman,et al.  Organic Geochemistry of Natural Waters , 1985, Developments in Biogeochemistry.

[26]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[27]  L. Provasoli Media and prospects for the cultivation of marine algae , 1966 .