Boundary classes for graph problems involving non-local properties

Abstract We continue the study of boundary classes for NP -hard problems and focus on seven NP -hard graph problems involving non-local properties: Hamiltonian Cycle , Hamiltonian Cycle Through Specified Edge , Hamiltonian Path , Feedback Vertex Set , Connected Vertex Cover , Connected Dominating Set and Graph VC CON Dimension . Our main result is the determination of the first boundary class for Feedback Vertex Set . We also determine boundary classes for Hamiltonian Cycle Through Specified Edge and Hamiltonian Path and give some insights on the structure of some boundary classes for the remaining problems.

[1]  Jiping Liu,et al.  A new bound on the feedback vertex sets in cubic graphs , 1996, Discret. Math..

[2]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VIII: Orientations , 1995, Ann. Pure Appl. Log..

[3]  V. E. Alekseev,et al.  Planar graph classes with the independent set problem solvable in polynomial time , 2009 .

[4]  Vadim V. Lozin,et al.  Boundary properties of graphs for algorithmic graph problems , 2011, Theor. Comput. Sci..

[5]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[6]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[7]  S. Thomas McCormick,et al.  Integer Programming and Combinatorial Optimization , 1996, Lecture Notes in Computer Science.

[8]  Vadim V. Lozin,et al.  A Dichotomy for Upper Domination in Monogenic Classes , 2014, COCOA.

[9]  Jian Song,et al.  Closing Complexity Gaps for Coloring Problems on H-Free Graphs , 2012, ISAAC.

[10]  M. Schaefer Deciding the VC Dimension is Σ p 3-complete , II , 2000 .

[11]  Frank Harary,et al.  Graph Theory , 2016 .

[12]  Erik Jan van Leeuwen,et al.  Independence and Efficient Domination on P6-free Graphs , 2015, SODA.

[13]  Marcin Kamiski,et al.  Max-cut and containment relations in graphs , 2012 .

[14]  Ewald Speckenmeyer,et al.  Untersuchungen zum Feedback-vertex-set-Problem in ungerichteten Graphen , 1983 .

[15]  Daniel Lokshtanov,et al.  Independent Set in P5-Free Graphs in Polynomial Time , 2014, SODA.

[16]  James G. Oxley,et al.  A Characterization of Tutte Invariants of 2-Polymatroids , 1993, J. Comb. Theory, Ser. B.

[17]  B. Mohar,et al.  Graph Minors , 2009 .

[18]  Gerhard J. Woeginger,et al.  The VC-dimension of Set Systems Defined by Graphs , 1997, Discret. Appl. Math..

[19]  T. Kloks,et al.  Feedback vertex set on chordal bipartite graphs , 2011, 1104.3915.

[20]  Jian Song,et al.  A Survey on the Computational Complexity of Coloring Graphs with Forbidden Subgraphs , 2014, J. Graph Theory.

[21]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[22]  Harold N. Gabow,et al.  An augmenting path algorithm for linear matroid parity , 1986, Comb..

[23]  Yoji Kajitani,et al.  On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three , 1988, Discret. Math..

[24]  James B. Orlin A Fast, Simpler Algorithm for the Matroid Parity Problem , 2008, IPCO.

[25]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[26]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[27]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[28]  Jan Arne Telle,et al.  Feedback vertex set on graphs of low clique-width , 2013, Eur. J. Comb..

[29]  P. Duchet,et al.  On Hadwiger''s number and stability number , 1982 .

[30]  Haiko Müller,et al.  Hamiltonian circuits in chordal bipartite graphs , 1996, Discret. Math..

[31]  D. Malyshev,et al.  Classes of subcubic planar graphs for which the independent set problem is polynomially solvable , 2013 .

[32]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[33]  Panos M. Pardalos,et al.  Critical hereditary graph classes: a survey , 2016, Optim. Lett..

[34]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[35]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[36]  Vadim V. Lozin,et al.  NP-hard graph problems and boundary classes of graphs , 2007, Theor. Comput. Sci..

[37]  V. E. Alekseev,et al.  On easy and hard hereditary classes of graphs with respect to the independent set problem , 2003, Discret. Appl. Math..

[38]  Andreas Brandstädt,et al.  The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs , 1987, Theor. Comput. Sci..

[39]  Erik Jan van Leeuwen,et al.  Independence and Efficient Domination on P6-free Graph , 2016, SODA 2016.

[40]  Dmitriy S. Malyshev,et al.  A complexity dichotomy and a new boundary class for the dominating set problem , 2016, J. Comb. Optim..

[41]  D. Malyshev,et al.  Classes of graphs critical for the edge list-ranking problem , 2014, Journal of Applied and Industrial Mathematics.

[42]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory, Ser. B.

[43]  Ján Plesník,et al.  The NP-Completeness of the Hamiltonian Cycle Problem in Planar Digraphs with Degree Bound Two , 1979, Inf. Process. Lett..

[44]  Robert James Douglas,et al.  NP-completeness and degree restricted spanning trees , 1992, Discret. Math..

[45]  D. V. Korobitsin,et al.  On the complexity of domination number determination in monogenic classes of graphs , 1992 .

[46]  Vadim V. Lozin,et al.  Recent developments on graphs of bounded clique-width , 2009, Discret. Appl. Math..

[47]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[48]  Vadim V. Lozin,et al.  On the maximum independent set problem in subclasses of subcubic graphs , 2013, J. Discrete Algorithms.

[49]  Mihalis Yannakakis,et al.  On limited nondeterminism and the complexity of the V-C dimension , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[50]  Nicholas Korpelainen,et al.  Boundary properties of graphs , 2012 .

[51]  Marcin Kaminski max-cut and Containment Relations in Graphs , 2010, WG.

[52]  Vadim V. Lozin,et al.  Boundary classes of graphs for the dominating set problem , 2004, Discrete Mathematics.

[53]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[54]  Satoru Iwata,et al.  A weighted linear matroid parity algorithm , 2017, STOC.

[55]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[56]  László Lovász,et al.  Matroid matching and some applications , 1980, J. Comb. Theory, Ser. B.

[57]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[58]  Jérôme Monnot,et al.  Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs , 2007, J. Discrete Algorithms.

[59]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[60]  David Manlove,et al.  Vertex and Edge Covers with Clustering Properties: Complexity and Algorithms , 2009, ACiD.

[61]  Ewald Speckenmeyer On feedback vertex sets and nonseparating independent sets in cubic graphs , 1988, J. Graph Theory.

[62]  Andrea Munaro,et al.  The VC-dimension of graphs with respect to k-connected subgraphs , 2013, Discret. Appl. Math..

[63]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[64]  Andrea Munaro,et al.  On line graphs of subcubic triangle-free graphs , 2017, Discret. Math..

[65]  Jean Fonlupt,et al.  The complexity of generalized clique covering , 1989, Discret. Appl. Math..

[66]  Nobuji Saito,et al.  NP-Completeness of the Hamiltonian Cycle Problem for Bipartite Graphs , 1980 .

[67]  Dieter Rautenbach,et al.  Feedback vertex sets in cubic multigraphs , 2015, Discret. Math..