Calibration of Water Distribution System Hydraulic Models

Hydraulic simulation models are frequently used nowadays for the planning and operational management of water distribution systems. To be effectively used, these models need to be calibrated first. During the calibration process the unknown model parameter values are determined with the aim to achieve as best as possible match between the simulated model predictions and the corresponding measurements obtained in the field. Traditionally, calibration was, and, unfortunately, still is in some cases, treated as a manual task. However, as this book (based on the author''s PhD thesis) will show, better results can be achieved if calibration of the analysed hydraulic model is formulated and solved as an optimisation problem. In addition, the book addresses the related problem of sampling design for calibration which aims to determine what,

[1]  Keith W. Little,et al.  WATER QUALITY MODEL CALIBRATION: A COMPARISON OF INPUT AND OUTPUT ERROR CRITERIA1 , 1989 .

[2]  James A. Liggett,et al.  LEAKS IN PIPE NETWORKS , 1992 .

[3]  L. Ormsbee,et al.  Explicit Pipe Network Calibration , 1986 .

[4]  T. Walski Technique for Calibrating Network Models , 1983 .

[5]  G. F. Uler,et al.  A hybrid technique for the optimal design of electromagnetic devices using direct search and genetic algorithms , 1997 .

[6]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[7]  Godfrey A. Walters,et al.  Multiobjective Genetic Algorithms for Pump Scheduling in Water Supply , 1997, Evolutionary Computing, AISB Workshop.

[8]  Dragan Savic,et al.  Optimal opportunistic maintenance policy using genetic algorithms, 1: formulation , 1995 .

[9]  M. Th. van Genuchten,et al.  Parameter estimation for unsaturated flow and transport models — A review , 1987 .

[10]  K. F. Wang,et al.  State estimation and leak detection and location in pipeline , 1991, Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation.

[11]  C. T. Haan,et al.  Calibration assessment and data collection for water distribution networks , 2001 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[14]  Roger W. Meier,et al.  Sampling Design for Network Model Calibration Using Genetic Algorithms , 2000 .

[15]  W. Zielke Frequency dependent friction in transient pipe flow , 1968 .

[16]  R. Powell,et al.  Optimal design of meter placement in water distribution systems , 1994 .

[17]  Dragan Savic,et al.  WATER NETWORK REHABILITATION WITH STRUCTURED MESSY GENETIC ALGORITHM , 1997 .

[18]  R. A. Deininger,et al.  Optimal Locations of Monitoring Stations in Water Distribution System , 1992 .

[19]  Masashi Shimada,et al.  Time‐Marching Approach for Pipe Steady Flows , 1988 .

[20]  Angus R. Simpson,et al.  Leak Detection and Calibration Using Transients and Genetic Algorithms , 2000 .

[21]  Larry W. Mays,et al.  Battle of the network models: Epilogue , 1987 .

[22]  Atulya K. Nagar,et al.  Observability Analysis of Water Distribution Systems Under Parametric and Measurement Uncertainty , 2000 .

[23]  G. Giudice,et al.  New Approach to Water Distribution Network Calibration , 1999 .

[24]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[25]  Srinivasa Lingireddy,et al.  Optimal Network Calibration Model Based on Genetic Algorithms , 1999 .

[26]  C. P. Liou Mass Imbalance Error of Waterhammer Equations and Leak Detection , 1994 .

[27]  D. Quagliarella,et al.  Airfoil and wing design through hybrid optimization strategies , 1998 .

[28]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[29]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.

[30]  Bryan W. Karney,et al.  EFFICIENT CALCULATION OF TRANSIENT FLOW IN SIMPLE PIPE NETWORKS , 1992 .

[31]  G. A. Nash,et al.  Efficient inverse transient analysis in series pipe systems , 1999 .

[32]  Chuda Basnet,et al.  Parameter Estimation for Water Distribution Networks , 1991 .

[33]  Uri Shamir,et al.  Water Distribution Systems Analysis , 1968 .

[34]  Hajime Kita,et al.  Multi-objective optimization by genetic algorithms: a review , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[35]  B. Hobbs,et al.  Review of Ground‐Water Quality Monitoring Network Design , 1993 .

[36]  Dragan Savic,et al.  Integration of a Model for Hydraulic Analysis of Water Distribution Networks with an Evolution Program for Pressure Regulation , 1996 .

[37]  G. B. Wetherill,et al.  Hitch-hiker's guide to genetic algorithms , 1993 .

[38]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[39]  Chengchao Xu,et al.  Probabilistic Model for Water Distribution Reliability , 1998 .

[40]  Mark S. Morley,et al.  Calibration of water distribution network models using genetic algorithms , 1998 .

[41]  Bryan W. Karney,et al.  Flexible Discretization Algorithm for Fixed-Grid MOC in Pipelines , 1997 .

[42]  L. Darrell Whitley,et al.  Staged hybrid genetic search for seismic data imaging , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[43]  Thomas M. Walski Case Study: Pipe Network Model Calibration Issues , 1986 .

[44]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[45]  E. Koelle,et al.  Leak Detection And Monitoring In Hydraulic Networks , 1970 .

[46]  Angus R. Simpson,et al.  A review of pipe calibration and leak detection methodologies for water distribution networks , 1997 .

[47]  J. Funk,et al.  A Boundary-Layer Theory for Transient Viscous Losses in Turbulent Flow , 1970 .

[48]  K. Sridharan,et al.  WLS Method for Parameter Estimation in Water Distribution Networks , 1996 .

[49]  A. Vardy,et al.  Transient, turbulent, smooth pipe friction , 1995 .

[50]  Newton,et al.  PARAMETER TUNING FOR SIMULATION MODELS OF WATER DISTRIBUTION NETWORKS. , 1980 .

[51]  A. Lambert,et al.  Accounting for losses: the bursts and background concept , 1994 .

[52]  J. Liggett,et al.  Inverse Transient Analysis in Pipe Networks , 1994 .

[53]  Don J. Wood,et al.  Using Variable Speed Pumps to Reduce Leakage and Improve Performance , 1995 .

[54]  A. Criminisi,et al.  Leak Analysis in Pipeline Systems by Means of Optimal Valve Regulation , 1999 .

[55]  Giuseppe Pezzinga,et al.  QUASI-2D MODEL FOR UNSTEADY FLOW IN PIPE NETWORKS , 1999 .

[56]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[57]  Clifford I. Voss,et al.  Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport , 1989 .

[58]  J. C. P. Liou,et al.  Leak Detection—Transient Flow Simulation Approaches , 1995 .