A Predictive Uncertainty Model for Field-Based Survey Maps Using Generalized Linear Models

In this paper we present an approach for predictive uncertainty modeling in field-based survey maps using Generalized Linear Models (GLM). Frequently, inherent uncertainty, especially in historical maps, makes the interpretation of objects very difficult. Such maps are of great value, but usually only few reference data are available. Consequently, the process of map interpretation could be greatly improved by the knowledge of uncertainty and its variation in space. To predict inherent uncertainty in forest cover information of the Swiss topographic map series from the 19th century we formulate rules from several predictors. These are topography-dependent variables and distance measures from old road networks. It is hypothesized that these rules best describe the errors of historical field work and hence the mapping quality. The uncertainty measure, the dependent variable, was derived from local map comparisons within moving windows of different sizes using a local community map as a reference map. The derivation of local Kappacoefficient and percent correctlyclassified from these enlarged sample plots takes the local distortion of the map into account. This allows an objective and spatially oriented comparison. Models fitted with uncertainty measures from 100m windows best described the relationship to the explanatory variables. A significant prediction potential for local uncertainty could thus be observed. The explained deviance by the Kappa-based model reached more than 40 percent. The correlation between predictions by the model and independent observations was ρ=0.76. Consequently, an improvement of the model to 47 percent, indicated by the G-value, was calculated. The model allows the spatial-oriented prediction of inherent uncertainty within different regions of comparable conditions. The integration of more study areas will result in more general rules for objective evaluation of the entire topographic map. The method can be applied for the evaluation of any field-based map which is used for subsequent applications such as land cover change assessments.

[1]  M. Jacobs,et al.  Comparison of Methods for Interpolating Soil Properties Using Limited Data , 2001 .

[2]  K. Itten,et al.  Potential of spectral feature analysis to estimate nitrogen concentration in mixed canopies , 2005 .

[3]  Trevor Hastie,et al.  Generalized linear and generalized additive models in studies of species distributions: setting the scene , 2002 .

[4]  F. Swanson,et al.  LANDSCAPE MANAGEMENT USING HISTORICAL FIRE REGIMES: BLUE RIVER, OREGON , 1999 .

[5]  Hugh G. Lewis,et al.  A generalized confusion matrix for assessing area estimates from remotely sensed data , 2001 .

[6]  Martin Charlton,et al.  Geographically Weighted Local Statistics Applied to Binary Data , 2002, GIScience.

[7]  Sucharita Gopal,et al.  Fuzzy set theory and thematic maps: accuracy assessment and area estimation , 2000, Int. J. Geogr. Inf. Sci..

[8]  K. Itten,et al.  Quantitative retrieval of biogeophysical characteristics using imaging spectroscopy - a mountain forest case study , 2004 .

[9]  Niklaus E. Zimmermann,et al.  SEASONAL VARIABILITY IN SPECTRAL REFLECTANCE FOR DISCRIMINATING GRASSLANDS ALONG A DRY-MESIC GRADIENT IN SWITZERLAND , 2005 .

[10]  Avid,et al.  Final Report of the MLP climate and biophysical mapping project September , 2001 , 2001 .

[11]  Forbes Ad,et al.  Classification-algorithm evaluation: five performance measures based on confusion matrices. , 1995 .

[12]  F. Agterberg,et al.  Trend Surface Analysis , 2021, Encyclopedia of Mathematical Geosciences.

[13]  Felix Kienast,et al.  Scénarios d'évolution des aires de répartition des principles essences forestières en fonction des scénarios de changement climatique , 2000 .

[14]  Niklaus E. Zimmermann,et al.  Erfassen kontinuierlicher Bodenbedeckungsdaten anhand von MODIS Daten in der Schweiz , 2004 .

[15]  Niklaus E. Zimmermann,et al.  Klimaveränderung - Vegetationsveränderung? Antworten mit Hilfe von Modellen , 1997 .

[16]  Stefan Leyk,et al.  A Conceptual Framework for Uncertainty Investigation in Map‐based Land Cover Change Modelling , 2005, Trans. GIS.

[17]  Alex Hagen,et al.  Fuzzy set approach to assessing similarity of categorical maps , 2003, Int. J. Geogr. Inf. Sci..

[18]  M. Austin Spatial prediction of species distribution: an interface between ecological theory and statistical modelling , 2002 .

[19]  George J. Klir,et al.  Uncertainty-Based Information , 1999 .

[20]  Brandon Plewe,et al.  The Nature of Uncertainty in Historical Geographic Information , 2002, Trans. GIS.

[21]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[22]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[23]  Roland L. Redmond,et al.  Estimation and Mapping of Misclassification Probabilities for Thematic Land Cover Maps , 1998 .

[24]  Niklaus E. Zimmermann,et al.  Farn- und Blütenpflanzen , 2002 .

[25]  Felix Kienast,et al.  Autre climat - Autre végétation? Les réponses données par la modélisation , 1997 .

[26]  Alan H. Fielding,et al.  How should accuracy be measured , 1999 .

[27]  Thomas Wohlgemuth,et al.  The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland—the result of climate warming? , 2005, International journal of biometeorology.

[28]  Niklaus E. Zimmermann,et al.  Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps , 2005 .

[29]  J. C. van Houwelingen,et al.  Predictive value of statistical models , 1990 .

[30]  N. Zimmermann,et al.  TreeMig: A forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale , 2006 .

[31]  Paul A. Longley,et al.  Geographical information systems : principles, techniques, management, and applications , 2005 .

[32]  L. Mathysa,et al.  Spatial pattern of forest resources in a multifunctional landscape , 2004 .

[33]  Ursula C. Benz,et al.  Measures of classification accuracy based on fuzzy similarity , 2000, IEEE Trans. Geosci. Remote. Sens..

[34]  Niklaus E. Zimmermann,et al.  Risks of global warming on montane and subalpine forests in Switzerland – a modeling study , 2000 .

[35]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[36]  D. R. Cutler,et al.  MODEL-BASED STRATIFICATIONS FOR ENHANCING THE DETECTION OF RARE ECOLOGICAL EVENTS , 2005 .

[37]  Peter Schoenswetter Biodiversity Conservation From Genes to Habitats , 2006 .

[38]  Niklaus E. Zimmermann,et al.  Identifying habitat suitability for hazel grouse Bonasa bonasia at the landscape scale , 2006 .

[39]  N. Zimmermann,et al.  Predictive mapping of alpine grasslands in Switzerland: Species versus community approach , 1999 .

[40]  Holger Gärtner,et al.  Jahrringe als Archive für interdisziplinäre Umweltforschung | Annual rings as an archive for interdisciplinary environmental research , 2004 .

[41]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[42]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[43]  Stefan Peter Eggenberg,et al.  Die alpinen Kalkschuttgesellschaften des Gemmipasses, Berner Alpen, Leukerbad (VS) , 1992 .

[44]  Lowell O. Stewart Public Land Surveys , 1979 .

[45]  Felix Kienast,et al.  Évolutions possibles des aires de répartition des principales essences forestières en fonction des scénarios de changement climatique , 2000 .

[46]  P. Atkinson,et al.  Uncertainty in remote sensing and GIS , 2002 .

[47]  Models of uncertainty in spatial data , 2022 .

[48]  A. Guisan,et al.  Invasive potential of the Giant Hogweed ( Heracleum mantegazzianum ) in the Western Swiss Alps and implications for management , 2006 .

[49]  N. Zimmermann TERRA/MODIS - Ein umfassendes, satellitengestütztes Erdbeobachtungssystem , 2001 .

[50]  K. Zimmermann,et al.  Das Klima lässt sich nicht kartieren - Klimakarten werden gerechnet , 1995 .

[51]  Niklaus E. Zimmermann,et al.  Wo wachsen die Bäume in 100 Jahren , 2006 .

[52]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[53]  Stephen V. Stehman,et al.  Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles , 1998 .

[54]  Daniel G. Brown,et al.  Classification and Boundary Vagueness in Mapping Presettlement Forest Types , 1998, Int. J. Geogr. Inf. Sci..

[55]  Niklaus E. Zimmermann,et al.  Estimating nitrogen in mixed forests from HyMap data using band-depth analysis and branch-and-bound algorithm , 2005 .

[56]  E. Nordheim,et al.  Assessing large-scale surveyor variability in the historic forest data of the original U.S. Public Land Survey , 2001 .

[57]  M. Goodchild,et al.  Uncertainty in geographical information , 2002 .

[58]  Thomas C. Edwards,et al.  Use of generalized linear models and digital data in a Forest Inventory of Northern Utah , 1999 .

[59]  Sucharita Ghosh,et al.  Comments on vegetation monitoring approaches , 2004 .

[60]  Achille C. Varzi Vagueness in geography , 2001 .

[61]  Niklaus E. Zimmermann,et al.  Klimaänderung und mögliche langfristige Auswirkungen auf die Vegetation der Schweiz , 1998 .

[62]  S. Weisberg Applied Linear Regression , 1981 .

[63]  Anthony Lehmann,et al.  GRASP: generalized regression analysis and spatial prediction , 2002 .

[64]  Eric R. Ziegel,et al.  An Introduction to Generalized Linear Models , 2002, Technometrics.

[65]  P. McCullagh,et al.  Generalized Linear Models , 1984 .