Weak Convergence of the Parzen-Type Probabilistic Neural Network Handling Time-Varying Noise

In this paper we study probabilistic neural networks based on the Parzen kernels. Weak convergence is established assuming time-varying noise. Simulation results are discussed in details.

[1]  L. Rutkowski,et al.  A neuro-fuzzy controller with a compromise fuzzy reasoning , 2002 .

[2]  Leszek Rutkowski,et al.  A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification , 1986 .

[3]  L. Rutkowski,et al.  Nonparametric fitting of multivariate functions , 1986 .

[4]  Leszek Rutkowski,et al.  On system identification by nonparametric function fitting , 1982 .

[5]  Jörg H. Siekmann,et al.  Artificial Intelligence and Soft Computing - ICAISC 2004 , 2004, Lecture Notes in Computer Science.

[6]  Rafal Scherer Boosting Ensemble of Relational Neuro-fuzzy Systems , 2006, ICAISC.

[7]  Leszek Rutkowski,et al.  ORTHOGONAL SERIES ESTIMATES OF A REGRESSION FUNCTION WITH APPLICATIONS IN SYSTEM IDENTIFICATION , 1982 .

[8]  Leszek Rutkowski On Bayes Risk Consistent Pattern Recognition Procedures in a Quasi-Stationary Environment , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  James Stephen Marron,et al.  Choosing a Kernel Regression Estimator , 1991 .

[10]  Leszek Rutkowski Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data , 1993, IEEE Trans. Signal Process..

[11]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[12]  Marcin Korytkowski,et al.  Modular Type-2 Neuro-fuzzy Systems , 2007, PPAM.

[13]  L. Rutkowski Sequential Estimates of a Regression Function by Orthogonal Series with Applications in Discrimination , 1981 .

[14]  L. Rutkowski Nonparametric identification of quasi-stationary systems , 1985 .

[15]  L. Györfi,et al.  A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics) , 2002 .

[16]  T. Cacoullos Estimation of a multivariate density , 1966 .

[17]  Leszek Rutkowski,et al.  A general approach to neuro-fuzzy systems , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[18]  Leszek Rutkowski,et al.  Identification of MISO nonlinear regressions in the presence of a wide class of disturbances , 1991, IEEE Trans. Inf. Theory.

[19]  P. J. Green,et al.  Probability and Statistical Inference , 1978 .

[20]  Leszek Rutlowski Sequential pattern recognition procedures derived from multiple Fourier series , 1988 .

[21]  L. Rutkowski,et al.  Nonparametric recovery of multivariate functions with applications to system identification , 1985, Proceedings of the IEEE.

[22]  Janusz T. Starczewski,et al.  Interval Type 2 Neuro-Fuzzy Systems Based on Interval Consequents , 2003 .

[23]  Janusz T. Starczewski,et al.  Connectionist Structures of Type 2 Fuzzy Inference Systems , 2001, PPAM.

[24]  L. Rutkowski Application of multiple Fourier series to identification of multivariable non-stationary systems , 1989 .

[25]  W. Greblicki,et al.  Density-free Bayes risk consistency of nonparametric pattern recognition procedures , 1981, Proceedings of the IEEE.

[26]  Ryszard Tadeusiewicz,et al.  Artificial Intelligence and Soft Computing - ICAISC 2006, 8th International Conference, Zakopane, Poland, June 25-29, 2006, Proceedings , 2006, International Conference on Artificial Intelligence and Soft Computing.

[27]  Robert Nowicki Rough Sets in the Neuro-Fuzzy Architectures Based on Monotonic Fuzzy Implications , 2004, ICAISC.

[28]  Leszek Rutkowski Nonparametric Procedures for Identification and Control of Linear Dynamic Systems , 1988 .

[29]  W. Härdle Applied Nonparametric Regression , 1992 .

[30]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[31]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[32]  Leszek Rutkowski,et al.  A fast training algorithm for neural networks , 1998 .

[33]  Robert Cierniak,et al.  On image compression by competitive neural networks and optimal linear predictors , 2000, Signal Process. Image Commun..

[34]  L. Rutkowski Non-parametric learning algorithms in time-varying environments☆ , 1989 .

[35]  Leszek Rutkowski,et al.  Neural Networks and Soft Computing , 2003 .

[36]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[37]  Krzysztof Patan,et al.  Optimal training strategies for locally recurrent neural networks , 2011 .

[38]  E. Rafajłowicz,et al.  On optimal global rate of convergence of some nonparametric identification procedures , 1989 .

[39]  L. Rutkowski On nonparametric identification with prediction of time-varying systems , 1984 .

[40]  L. Rutkowski Real-time identification of time-varying systems by non-parametric algorithms based on Parzen kernels , 1985 .

[41]  W. Greblicki,et al.  An orthogonal series estimate of time-varying regression , 1983 .

[42]  Mustafa Ozden,et al.  A color image segmentation approach for content-based image retrieval , 2007, Pattern Recognit..

[43]  L. Rutkowski On-line identification of time-varying systems by nonparametric techniques , 1982 .

[44]  W. Härdle Applied Nonparametric Regression , 1991 .

[45]  Ewaryst Rafaj⌈owicz Nonparametric orthogonal series estimators of regression: A class attaining the optimal convergence rate in L2☆ , 1987 .

[46]  Leszek Rutkowski,et al.  A new method for system modelling and pattern classification , 2004 .