A convex optimization procedure to compute ℋ︁2 and ℋ︁∞ norms for uncertain linear systems in polytopic domains

In this paper, a convergent numerical procedure to compute ℋ2 and ℋ∞ norms of uncertain time-invariant linear systems in polytopic domains is proposed. The norms are characterized by means of homogeneous polynomially parameter-dependent Lyapunov functions of arbitrary degree g solving parameter-dependent linear matrix inequalities. Using an extension of Polya's Theorem to the case of matrix-valued polynomials, a sequence of linear matrix inequalities is constructed in terms of an integer d providing a Lyapunov solution for a given degree g and guaranteed ℋ2 and ℋ∞ costs whenever such a solution exists. As the degree of the homogeneous polynomial matrices increases, the guaranteed costs tend to the worst-case norm evaluations in the polytope. Both continuous- and discrete-time uncertain systems are investigated, as illustrated by numerical examples that include comparisons with other techniques from the literature. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[2]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[3]  M. Sato,et al.  Robust Stability/Performance Analysis for Linear Time-Invariant Polytopically Parameter-Dependent Systems using Polynomially Parameter-Dependent Lyapunov Functions , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[4]  Alexandre Trofino,et al.  Biquadratic stability of uncertain linear systems , 2001, IEEE Trans. Autom. Control..

[5]  Tetsuya Iwasaki,et al.  Robust performance analysis for systems with structured uncertainty , 1996 .

[6]  Venkataramanan Balakrishnan,et al.  Semidefinite programming duality and linear time-invariant systems , 2003, IEEE Trans. Autom. Control..

[7]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[8]  Ricardo C. L. F. Oliveira,et al.  H∞ Guaranteed Cost Computation by Means of Parameter Dependent Lyapunov Functions , 2003 .

[9]  P. Peres,et al.  Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .

[10]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[11]  Ricardo C. L. F. Oliveira,et al.  2 guaranteed cost computation by means of parameter dependent Lyapunov functions , 2004, Int. J. Syst. Sci..

[12]  Ian R. Petersen,et al.  Quadratic guaranteed cost control with robust pole placement in a disk , 1996 .

[13]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[14]  R.C.L.F. Oliveira,et al.  LMI conditions for the existence of polynomially parameter-dependent Lyapunov functions assuring robust stability , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[16]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[17]  P.L.D. Peres,et al.  Existence of Homogeneous Polynomial Solutions for Parameter-Dependent Linear Matrix Inequalities with Parameters in the Simplex , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[18]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[19]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[20]  M. Sato Robust performance analysis of linear time-invariant parameter-dependent systems using higher-order Lyapunov functions , 2005, Proceedings of the 2005, American Control Conference, 2005..

[21]  Graziano Chesi,et al.  POLYNOMIALLY PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS FOR ROBUST H∞ PERFORMANCE ANALYSIS , 2005 .

[22]  Ian R. Petersen,et al.  Optimal guaranteed cost control of uncertain systems via static and dynamic output feedback , 1996, Autom..

[23]  Brian D. O. Anderson,et al.  Lyapunov functions for uncertain systems with applications to the stability of time varying systems , 1994 .

[24]  Pierre-Alexandre Bliman,et al.  An existence result for polynomial solutions of parameter-dependent LMIs , 2004, Syst. Control. Lett..

[25]  Ricardo C. L. F. Oliveira,et al.  LMI relaxations for robust H2 performance analysis of polytopic linear systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[26]  Ian R. Petersen,et al.  Guaranteed cost LQG control of uncertain linear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[27]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[28]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[29]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[30]  D. Peaucelle,et al.  Robust Performance Analysis of Linear Time-Invariant Uncertain Systems by Taking Higher-Order Time-Derivatives of the State , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[31]  Masayuki Sato,et al.  Robust Stability/Performance Analysis for Linear Time-Invariant Polytopically Parameter-Dependent Systems using Polynomially Parameter-Dependent Lyapunov Functions , 2006, CDC.

[32]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[33]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[34]  Ricardo C. L. F. Oliveira,et al.  LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions , 2006, Syst. Control. Lett..

[35]  Ricardo C. L. F. Oliveira,et al.  H∞ GUARANTEED COST COMPUTATION VIA POLYNOMIALLY PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS , 2005 .

[36]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[37]  M.C. de Oliveira,et al.  An LMI characterization of polynomial parameter-dependent Lyapunov functions for robust stability , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[38]  Tomomichi Hagiwara,et al.  A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems , 2005, Autom..

[39]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[40]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[41]  Robert E. Skelton,et al.  Stability tests for constrained linear systems , 2001 .

[42]  C. W. Scherer,et al.  Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..

[43]  Pedro Luis Dias Peres,et al.  An LMI condition for the robust stability of uncertain continuous-time linear systems , 2002, IEEE Trans. Autom. Control..

[44]  Pedro Luis Dias Peres,et al.  Quadratic stabilizability of linear uncertain systems in convex-bounded domains, , 1993, Autom..

[45]  Dimitri Peaucelle,et al.  ROBUST H2 PERFORMANCE ANALYSIS OF UNCERTAIN LTI SYSTEMS VIA POLYNOMIALLY PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS , 2006 .

[46]  Graziano Chesi,et al.  Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[47]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[48]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[49]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[50]  Pedro Luis Dias Peres,et al.  Hinfinityand H2 guaranteed costs computation for uncertain linear systems , 1997, Int. J. Syst. Sci..

[51]  Ricardo H. C. Takahashi,et al.  H/sub 2/ and H/spl infin/ e-guaranteed cost computation of uncertain linear systems , 2007 .

[52]  J. Lasserre,et al.  On parameter-dependent Lyapunov functions for robust stability of linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[53]  M. Zohdy,et al.  Necessary and sufficient conditions of quadratic stability of uncertain linear systems , 1990 .