PERCIRS: a system to combine personalized and collaborative information retrieval

Purpose – This paper aims to discuss and test the claim that utilization of the personalization techniques can be valuable to improve the efficiency of collaborative information retrieval (CIR) systems.Design/methodology/approach – A new personalized CIR system, called PERCIRS, is presented based on the user profile similarity calculation (UPSC) formulas. To this aim, the paper proposes several UPSC formulas as well as two techniques to evaluate them. As the proposed CIR system is personalized, it could not be evaluated by Cranfield, like evaluation techniques (e.g. TREC). Hence, this paper proposes a new user‐centric mechanism, which enables PERCIRS to be evaluated. This mechanism is generic and can be used to evaluate any other personalized IR system.Findings – The results show that among the proposed UPSC formulas in this paper, the (query‐document)‐graph based formula is the most effective. After integrating this formula into PERCIRS and comparing it with nine other IR systems, it is concluded that th...

[1]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[2]  Iadh Ounis,et al.  A study of the dirichlet priors for term frequency normalisation , 2005, SIGIR '05.

[3]  Gianni Amati,et al.  Probability models for information retrieval based on divergence from randomness , 2003 .

[4]  Dean P. Foster,et al.  Clustering Methods for Collaborative Filtering , 1998, AAAI 1998.

[5]  Benjamin M. Marlin,et al.  Modeling User Rating Profiles For Collaborative Filtering , 2003, NIPS.

[6]  Thomas Hofmann,et al.  Collaborative filtering via gaussian probabilistic latent semantic analysis , 2003, SIGIR.

[7]  Joongmin Choi,et al.  Personalized Information Retrieval Using the User History , 2008, 2008 International Conference on Multimedia and Ubiquitous Engineering (mue 2008).

[8]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[9]  Barry Smyth,et al.  Anonymous personalization in collaborative web search , 2006, Information Retrieval.

[10]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[11]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[12]  Iadh Ounis,et al.  Term Frequency Normalisation Tuning for BM25 and DFR Models , 2005, ECIR.

[13]  Iadh Ounis,et al.  Query performance prediction , 2006, Inf. Syst..

[14]  Hassan Naderi,et al.  A graph-based profile similarity calculation method for collaborative information retrieval , 2008, SAC '08.

[15]  Ajantha Dahanayake,et al.  Personalized Information Retrieval and Access: Concepts, Methods and Practices , 2008 .

[16]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[17]  Gregory Dudek,et al.  Mixed Collaborative and Content-Based Filtering with User-Contributed Semantic Features , 2006, AAAI.

[18]  David M. Pennock,et al.  A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High-Dimensional Domains , 2002, NIPS.

[19]  Hassan Naderi,et al.  An Efficient Collaborative Information Retrieval System by Incorporating the User Profile , 2006, Adaptive Multimedia Retrieval.

[20]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[21]  Markus Junker,et al.  Towards Collaborative Information Retrieval: Three Approaches , 2003, Text Mining.

[22]  Amos David,et al.  METIORE: A Personalized Information Retrieval System , 2001, User Modeling.

[23]  Naoki Abe,et al.  Collaborative Filtering Using Weighted Majority Prediction Algorithms , 1998, ICML.

[24]  Meredith Ringel Morris,et al.  A survey of collaborative web search practices , 2008, CHI.

[25]  Hassan Naderi Personalized information retrieval and adaptation to user's context , 2008 .

[26]  Alexander Pretschner,et al.  Ontology-based personalized search and browsing , 2003, Web Intell. Agent Syst..

[27]  Hassan Naderi,et al.  A Two Layered personalized Information Retrieval System , 2006 .

[28]  Yannis Avrithis,et al.  Personalized information retrieval based on context and ontological knowledge , 2008, The Knowledge Engineering Review.

[29]  Iadh Ounis,et al.  Usefulness of hyperlink structure for query-biased topic distillation , 2004, SIGIR '04.

[30]  Barry Smyth,et al.  I-SPY - Anonymous, Community-Based Personalization by Collaborative Meta-Search , 2003, SGAI Conf..

[31]  Kazuaki Kishida,et al.  Simplified Logistic Regression Model and Parameter Estimation 2 . 1 Simplified logistic regression model , 2001 .

[32]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[33]  Bernard J. Jansen,et al.  Learning about Potential Users of Collaborative Information Retrieval Systems , 2009, ArXiv.

[34]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 1 , 2000, Inf. Process. Manag..

[35]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[36]  Barry Smyth,et al.  A Community-Based Approach to Personalizing Web Search , 2007, Computer.

[37]  Hsin-Hsi Chen,et al.  Query Expansion with ConceptNet and WordNet: An Intrinsic Comparison , 2006, AIRS.

[38]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[39]  C. J. van Rijsbergen,et al.  Probabilistic models of information retrieval based on measuring the divergence from randomness , 2002, TOIS.

[40]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[41]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[42]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[43]  Barry Smyth,et al.  Exploiting Query Repetition and Regularity in an Adaptive Community-Based Web Search Engine , 2004, User Modeling and User-Adapted Interaction.

[44]  Norbert Fuhr,et al.  Applying the Divergence from Randomness Approach for Content-Only Search in XML Documents , 2004, ECIR.

[45]  Maribeth Back,et al.  A Taxonomy of Collaboration in Online Information Seeking , 2009, ArXiv.

[46]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[47]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[48]  Hassan Naderi,et al.  PERCIRS: a PERsonalized Collaborative Information Retrieval System , 2006, INFORSID.

[49]  Cyril Cleverdon,et al.  The Cranfield tests on index language devices , 1997 .

[50]  Eric Horvitz,et al.  SearchTogether: an interface for collaborative web search , 2007, UIST.

[51]  Chirag Shah,et al.  Algorithmic mediation for collaborative exploratory search , 2008, SIGIR '08.

[52]  Ji-Rong Wen,et al.  Clustering user queries of a search engine , 2001, WWW '01.

[53]  Peter Ingwersen,et al.  The Turn - Integration of Information Seeking and Retrieval in Context , 2005, The Kluwer International Series on Information Retrieval.

[54]  Hassan Naderi,et al.  Graph-Based Profile Similarity Calculation Method and Evaluation , 2008, ECIR.