The cuticular hydrocarbon profiles of honey bee workers develop via a socially-modulated innate process

Large social insect colonies exhibit a remarkable ability for recognizing group members via colony-specific cuticular pheromonal signatures. Previous work suggested that in some ant species, colony-specific pheromonal profiles are generated through a mechanism involving the transfer and homogenization of cuticular hydrocarbons (CHCs) across members of the colony. However, how colony-specific chemical profiles are generated in other social insect clades remains mostly unknown. Here we show that in the honey bee (Apis mellifera), the colony-specific CHC profile completes its maturation in foragers via a sequence of stereotypic age-dependent quantitative and qualitative chemical transitions, which are driven by environmentally-sensitive intrinsic biosynthetic pathways. Therefore, the CHC profiles of individual honey bees are not likely produced through homogenization and transfer mechanisms, but instead mature in association with age-dependent division of labor. Furthermore, non-nestmate rejection behaviors seem to be contextually restricted to behavioral interactions between entering foragers and guards at the hive entrance.

[1]  S. Martin,et al.  Is the Salivary Gland Associated with Honey Bee Recognition Compounds in Worker Honey Bees (Apis mellifera)? , 2018, Journal of Chemical Ecology.

[2]  D. Dickman,et al.  The Drosophila Postsynaptic DEG/ENaC Channel ppk29 Contributes to Excitatory Neurotransmission , 2017, The Journal of Neuroscience.

[3]  M. Berenbaum,et al.  Task‐related differential expression of four cytochrome P450 genes in honeybee appendages , 2015, Insect molecular biology.

[4]  J. Yew,et al.  Insect pheromones: An overview of function, form, and discovery. , 2015, Progress in lipid research.

[5]  E. Søvik,et al.  Function and evolution of microRNAs in eusocial Hymenoptera , 2015, Front. Genet..

[6]  S. Carroll,et al.  Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  D. Gordon,et al.  Distributed nestmate recognition in ants , 2015, Proceedings of the Royal Society B: Biological Sciences.

[8]  L. Chittka,et al.  Speed and accuracy in nest-mate recognition: a hover wasp prioritizes face recognition over colony odour cues to minimize intrusion by outsiders , 2015, Proceedings of the Royal Society B: Biological Sciences.

[9]  P. Bayrak-Toydemir,et al.  Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era , 2015, Front. Genet..

[10]  Marti J. Anderson,et al.  Measures of precision for dissimilarity-based multivariate analysis of ecological communities , 2014, Ecology letters.

[11]  M. J. Ferreira-Caliman,et al.  Exoskeleton formation in Apis mellifera: cuticular hydrocarbons profiles and expression of desaturase and elongase genes during pupal and adult development. , 2014, Insect biochemistry and molecular biology.

[12]  D. Kronauer,et al.  Genetic Distance and Age Affect the Cuticular Chemical Profiles of the Clonal Ant Cerapachys biroi , 2014, Journal of Chemical Ecology.

[13]  Y. Ben-Shahar,et al.  Natural antisense transcripts regulate the neuronal stress response and excitability , 2014, eLife.

[14]  A. Gould,et al.  The development and functions of oenocytes. , 2014, Annual review of entomology.

[15]  Francis L W Ratnieks,et al.  Context affects nestmate recognition errors in honey bees and stingless bees , 2013, Journal of Experimental Biology.

[16]  D. Gordon,et al.  Aggression is task dependent in the red harvester ant (Pogonomyrmex barbatus) , 2013 .

[17]  G. Robinson,et al.  Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome , 2012, Genes, brain, and behavior.

[18]  P. Newey Not one odour but two: A new model for nestmate recognition. , 2011, Journal of theoretical biology.

[19]  S. Martin,et al.  Task Group Differences in Cuticular Lipids in the Honey Bee Apis mellifera , 2011, Journal of Chemical Ecology.

[20]  J. Boomsma,et al.  Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within‐colony nepotism , 2010, Journal of evolutionary biology.

[21]  Robert E. Page,et al.  Colony Integration in Honey Bees: Mechanisms of Behavioral Reversion , 2010 .

[22]  J. Heinze,et al.  Apparent Dear‐enemy Phenomenon and Environment‐based Recognition Cues in the Ant Leptothorax nylanderi , 2010 .

[23]  Saurabh Sinha,et al.  Honey bee aggression supports a link between gene regulation and behavioral evolution , 2009, Proceedings of the National Academy of Sciences.

[24]  S. Martin,et al.  Nestmate and Task Cues are Influenced and Encoded Differently within Ant Cuticular Hydrocarbon Profiles , 2009, Journal of Chemical Ecology.

[25]  A. Aubert,et al.  Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers , 2008, BMC Biology.

[26]  G. Robinson,et al.  Genetic and genomic analyses of the division of labour in insect societies , 2008, Nature Reviews Genetics.

[27]  S. Martin,et al.  Colony-specific Hydrocarbons Identify Nest Mates in Two Species of Formica Ant , 2008, Journal of Chemical Ecology.

[28]  C. Grozinger,et al.  Pheromonal regulation of starvation resistance in honey bee workers (Apis mellifera) , 2008, Naturwissenschaften.

[29]  Adrienne Chu,et al.  A Model-Based Analysis of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila melanogaster , 2007, PloS one.

[30]  A. Griffin,et al.  Evolutionary Explanations for Cooperation , 2007, Current Biology.

[31]  F. Ratnieks,et al.  Nest-mate recognition template of guard honeybees (Apis mellifera) is modified by wax comb transfer , 2007, Biology Letters.

[32]  J. Boomsma,et al.  The origin of the chemical profiles of fungal symbionts and their significance for nestmate recognition in Acromyrmex leaf-cutting ants , 2007, Behavioral Ecology and Sociobiology.

[33]  Thomas Boehm,et al.  Quality Control in Self/Nonself Discrimination , 2006, Cell.

[34]  T. Wenseleers,et al.  Wax combs mediate nestmate recognition by guard honeybees , 2006, Animal Behaviour.

[35]  J. Silverman,et al.  Geographical variation in Argentine ant aggression behaviour mediated by environmentally derived nestmate recognition cues , 2006, Animal Behaviour.

[36]  S. Turillazzi,et al.  Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. , 2005, Chemical senses.

[37]  J. Silverman,et al.  Diet-Related Modification of Cuticular Hydrocarbon Profiles of the Argentine Ant, Linepithema humile, Diminishes Intercolony Aggression , 2005, Journal of Chemical Ecology.

[38]  G. Robinson,et al.  Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor , 2004, Journal of Experimental Biology.

[39]  R. Yamaoka,et al.  Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae) , 2004 .

[40]  A. Hefetz,et al.  Food influence on colonial recognition and chemical signature between nestmates in the fungus-growing ant Acromyrmex subterraneus subterraneus , 2004, CHEMOECOLOGY.

[41]  M. Breed,et al.  Testing the blank slate hypothesis: why honey bee colonies accept young bees , 2004, Insectes Sociaux.

[42]  G. Robinson,et al.  Gene Expression Profiles in the Brain Predict Behavior in Individual Honey Bees , 2003, Science.

[43]  G. Robinson,et al.  Influence of Gene Action Across Different Time Scales on Behavior , 2002, Science.

[44]  Stefan Sieben,et al.  Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet , 2002, Naturwissenschaften.

[45]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[46]  D. Gordon,et al.  Task-Related Environment Alters the Cuticular Hydrocarbon Composition of Harvester Ants , 2001, Journal of Chemical Ecology.

[47]  S. Turillazzi,et al.  Deciphering the recognition signature within the cuticular chemical profile of paper wasps , 2001, Animal Behaviour.

[48]  A. Lenoir,et al.  Effects of social isolation on hydrocarbon pattern and nestmate recognition in the ant Aphaenogaster senilis (Hymenoptera, Formicidae) , 2001, Insectes Sociaux.

[49]  S. Lahav,et al.  Segregation of Colony Odor in the Desert Ant Cataglyphis niger , 2001, Journal of Chemical Ecology.

[50]  C. Malosse,et al.  Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. , 2001, Journal of insect physiology.

[51]  G. Robinson,et al.  Differences in performance on a reversal learning test and division of labor in honey bee colonies , 2000, Animal Cognition.

[52]  D. Liang,et al.  “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile , 2000, Naturwissenschaften.

[53]  R. Boulay,et al.  Camponotus fellah colony integration: worker individuality necessitates frequent hydrocarbon exchanges , 2000, Animal Behaviour.

[54]  F. Ratnieks,et al.  Adaptive shifts in honey bee (Apis mellifera L.) guarding behavior support predictions of the acceptance threshold model , 2000 .

[55]  Francis L. W. Ratnieks,et al.  Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage , 1999, Animal Behaviour.

[56]  Deborah M. Gordon,et al.  Task-Related Differences in the Cuticular Hydrocarbon Composition of Harvester Ants, Pogonomyrmex barbatus , 1998, Journal of Chemical Ecology.

[57]  Michael D. Breed,et al.  RECOGNITION PHEROMONES OF THE HONEY BEE , 1998 .

[58]  G. Robinson,et al.  Division of labor between undertaker specialists and other middle-aged workers in honey bee colonies , 1997, Behavioral Ecology and Sociobiology.

[59]  K. Espelie,et al.  Nest surface hydrocarbons facilitate nestmate recognition for the social wasp,Polistes metricus Say (Hymenoptera: Vespidae) , 1996, Journal of Insect Behavior.

[60]  A. Pusey,et al.  Inbreeding avoidance in animals. , 1996, Trends in ecology & evolution.

[61]  M. Meskali,et al.  Behavioural effects of an experimental change in the chemical signature of the antCamponotus vagus (Scop.) , 1995, Insectes Sociaux.

[62]  V. Soroker,et al.  Structural and chemical ontogeny of the postpharyngeal gland in the desert ant Cataglyphis niger , 1995 .

[63]  Victoria Soroker,et al.  Hydrocarbon dynamics within and between nestmates inCataglyphis niger (Hymenoptera: Formicidae) , 1995, Journal of Chemical Ecology.

[64]  V. Soroker,et al.  The postpharyngeal gland as a “Gestalt” organ for nestmate recognition in the antCataglyphis niger , 1994, Naturwissenschaften.

[65]  C. Errard Long-term memory involved in nestmate recognition in ants , 1994, Animal Behaviour.

[66]  G. Robinson,et al.  Honeybee colony integration: worker-worker interactions mediate hormonally regulated plasticity in division of labor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Metcalf,et al.  Extractable hydrocarbons and kin recognition in honeybee (Apis mellifera L.) , 1991, Journal of Chemical Ecology.

[68]  K. Espelie,et al.  Surface lipids of social waspPolistes melricus say and its nest and nest pedicel and their relation to nestmate recognition , 1990, Journal of Chemical Ecology.

[69]  G. Robinson,et al.  Hormonal and Genetic Control of Behavioral Integration in Honey Bee Colonies , 1989, Science.

[70]  H. Reeve,et al.  The Evolution of Conspecific Acceptance Thresholds , 1989, The American Naturalist.

[71]  M. Breed,et al.  Comb wax mediates the acquisition of nest-mate recognition cues in honey bees. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Gerald S. Wilkinson,et al.  Reciprocal altruism in bats and other mammals , 1988 .

[73]  B. Hölldobler,et al.  Influence of virgin queens on kin recognition in the carpenter antCamponotus floridanus (Hymenoptera: Formicidae) , 1988, Insectes Sociaux.

[74]  Robin J Stuart Collective cues as a basis for nestmate recognition in polygynous leptothoracine ants. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[75]  B. Hölldobler,et al.  The kin recognition system of carpenter ants (Camponotus spp.) , 1987, Behavioral Ecology and Sociobiology.

[76]  B. Hölldobler,et al.  The kin recognition system of carpenter ants (Camponotus spp.) , 1986, Behavioral Ecology and Sociobiology.

[77]  H. Reeve,et al.  Nestmate recognition in social wasps: the origin and acquisition of recognition odours , 1986, Animal Behaviour.

[78]  B. H�lldobler,et al.  Nestmate and Kin Recognition in Interspecific Mixed Colonies of Ants , 1983, Science.

[79]  P. Sherman,et al.  Kin Recognition by Phenotype Matching , 1983, The American Naturalist.

[80]  W. Getz An analysis of learned kin recognition in hymenoptera , 1982 .

[81]  W. Getz Genetically based kin recognition systems , 1981 .

[82]  L. Greenberg,et al.  Nestmate recognition in sweat bees (Lasioglossum zephyrum): Does an individual recognize its own odour or only odours of its nestmates? , 1981, Animal Behaviour.

[83]  R. Crozier,et al.  Analysis of two genetic models for the innate components of colony odor in social Hymenoptera , 1979, Behavioral Ecology and Sociobiology.

[84]  R. Trivers The Evolution of Reciprocal Altruism , 1971, The Quarterly Review of Biology.

[85]  W. Hamilton The genetical evolution of social behaviour. II. , 1964, Journal of theoretical biology.

[86]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[87]  P. de Villemereuil,et al.  Kin recognition or phenotype matching? , 2016, The New phytologist.

[88]  H. McCreery,et al.  Nestmate Recognition in Eusocial Insects: The Honeybee as a Model System , 2015 .

[89]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[90]  D. Gordon,et al.  Nestmate recognition in ants (Hymenoptera: Formicidae): a review , 2012 .

[91]  G. Robinson,et al.  Honey Bees Gene Expression Profiles in the Brain Predict Behavior in Individual , 2011 .

[92]  Patrizia d'Ettorre,et al.  Nestmate recognition in social insects and the role of hydrocarbons , 2010 .

[93]  A. Hefetz The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) - interplay of colony odor uniformity and odor idiosyncrasy. A review , 2007 .

[94]  N. Tsutsui Scents of self: The expression component of self/non- self recognition systems , 2004 .

[95]  Dominique Fresneau,et al.  Individuality and colonial identity in ants: the emergence of the social representation concept , 1999 .

[96]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[97]  G. Robinson,et al.  Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees. , 1995, Journal of neurobiology.

[98]  G. Robinson Regulation of division of labor in insect societies. , 1992, Annual review of entomology.

[99]  C. Michener,et al.  Mechanisms of identification and discrimination in social Hymenoptera. , 1980 .