BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies

Cancer has long been understood as a somatic evolutionary process, but many details of tumor progression remain elusive. Here, we present BitPhylogeny, a probabilistic framework to reconstruct intra-tumor evolutionary pathways. Using a full Bayesian approach, we jointly estimate the number and composition of clones in the sample as well as the most likely tree connecting them. We validate our approach in the controlled setting of a simulation study and compare it against several competing methods. In two case studies, we demonstrate how BitPhylogeny reconstructs tumor phylogenies from methylation patterns in colon cancer and from single-cell exomes in myeloproliferative neoplasm.

[1]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[2]  Huanming Yang,et al.  Single-Cell Exome Sequencing Reveals Single-Nucleotide Mutation Characteristics of a Kidney Tumor , 2012, Cell.

[3]  Michael I. Jordan,et al.  Tree-Structured Stick Breaking Processes for Hierarchical Data , 2010, 1006.1062.

[4]  Serafim Batzoglou,et al.  Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery , 2013, RECOMB.

[5]  A. Bouchard-Côté,et al.  PyClone: statistical inference of clonal population structure in cancer , 2014, Nature Methods.

[6]  James Hicks,et al.  Tracing the tumor lineage , 2010, Molecular oncology.

[7]  Sean C. Bendall,et al.  Extracting a Cellular Hierarchy from High-dimensional Cytometry Data with SPADE , 2011, Nature Biotechnology.

[8]  N. McGranahan,et al.  The causes and consequences of genetic heterogeneity in cancer evolution , 2013, Nature.

[9]  Shankar Vembu,et al.  Inferring clonal evolution of tumors from single nucleotide somatic mutations , 2012, BMC Bioinformatics.

[10]  Peng Qiu,et al.  Discovering Biological Progression Underlying Microarray Samples , 2011, PLoS Comput. Biol..

[11]  Dan Gusfield,et al.  Efficient algorithms for inferring evolutionary trees , 1991, Networks.

[12]  K. Ickstadt,et al.  Improved criteria for clustering based on the posterior similarity matrix , 2009 .

[13]  Robin L. Jones,et al.  Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. , 2014, Cell reports.

[14]  C. Cannings Statistical Methods in Molecular Evolution , 2006 .

[15]  James D. Brenton,et al.  Phylogenetic Quantification of Intra-tumour Heterogeneity , 2013, PLoS Comput. Biol..

[16]  R. Schwartz,et al.  Expectation-maximization method for reconstructing tumor phylogenies from single-cell data. , 2006, Computational systems bioinformatics. Computational Systems Bioinformatics Conference.

[17]  F. Markowetz,et al.  Evolutionary Distances in the Twilight Zone—A Rational Kernel Approach , 2010, PloS one.

[18]  Ryan D. Morin,et al.  Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution , 2009, Nature.

[19]  David Haussler,et al.  Phylogenetic Hidden Markov Models , 2005 .

[20]  Russell Schwartz,et al.  Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations , 2013, Bioinform..

[21]  Eran Halperin,et al.  Haplotype reconstruction from genotype data using Imperfect Phylogeny , 2004, Bioinform..

[22]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[23]  R. Karp,et al.  Conserved pathways within bacteria and yeast as revealed by global protein network alignment , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Simon Whelan,et al.  Statistical Methods in Molecular Evolution , 2005 .

[25]  Julia Hirschberg,et al.  V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure , 2007, EMNLP.

[26]  Benjamin J. Raphael,et al.  THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data , 2013, Genome Biology.

[27]  R. Schwartz,et al.  Network-Based Inference of Cancer Progression from Microarray Data , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[28]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[29]  S. Tavaré,et al.  Counting human somatic cell replications: methylation mirrors endometrial stem cell divisions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Dennis Kostka,et al.  Modeling DNA methylation dynamics with approaches from phylogenetics , 2014, Bioinform..

[31]  D. Shibata Mutation and epigenetic molecular clocks in cancer. , 2011, Carcinogenesis.

[32]  Russell Schwartz,et al.  Applying unmixing to gene expression data for tumor phylogeny inference , 2010, BMC Bioinformatics.

[33]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.

[34]  Ron Shamir,et al.  Incomplete Directed Perfect Phylogeny , 2000, CPM.

[35]  Y. Kluger,et al.  TrAp: a tree approach for fingerprinting subclonal tumor composition , 2013, Nucleic acids research.

[36]  Amos Tanay,et al.  Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. , 2014, Cell reports.

[37]  A. Schäffer,et al.  Tumor classification using phylogenetic methods on expression data. , 2004, Journal of theoretical biology.

[38]  M. Gerstung,et al.  Reliable detection of subclonal single-nucleotide variants in tumour cell populations , 2012, Nature Communications.

[39]  C. Ulrich,et al.  Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer. , 2014, Gastroenterology.

[40]  D. Penny Inferring Phylogenies.—Joseph Felsenstein. 2003. Sinauer Associates, Sunderland, Massachusetts. , 2004 .

[41]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[42]  A. Briones,et al.  The secrets of El Dorado viewed through a microbial perspective , 2012, Front. Microbio..

[43]  Carlos Caldas,et al.  The implications of clonal genome evolution for cancer medicine. , 2013, The New England journal of medicine.

[44]  Huanming Yang,et al.  Single-Cell Exome Sequencing and Monoclonal Evolution of a JAK2-Negative Myeloproliferative Neoplasm , 2012, Cell.

[45]  Shibu Yooseph,et al.  Haplotyping as Perfect Phylogeny: A Direct Approach , 2003, J. Comput. Biol..

[46]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[47]  F. Markowetz,et al.  Cancer Evolution: Mathematical Models and Computational Inference , 2014, Systematic biology.

[48]  Andrea Sottoriva,et al.  Single-molecule genomic data delineate patient-specific tumor profiles and cancer stem cell organization. , 2013, Cancer research.

[49]  T. Graham,et al.  Use of methylation patterns to determine expansion of stem cell clones in human colon tissue. , 2011, Gastroenterology.

[50]  R. Poulsom,et al.  Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution , 2013, Proceedings of the National Academy of Sciences.

[51]  K. Metzner,et al.  Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data , 2012, Front. Microbio..

[52]  Camille Stephan-Otto Attolini,et al.  A Differentiation-Based Phylogeny of Cancer Subtypes , 2010, PLoS Comput. Biol..

[53]  Philipp Koehn,et al.  Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL) , 2007 .

[54]  Darryl Shibata,et al.  Counting Divisions in a Human Somatic Cell Tree: How, What and Why , 2006, Cell cycle.

[55]  O. Elemento,et al.  Aberration in DNA Methylation in B-Cell Lymphomas Has a Complex Origin and Increases with Disease Severity , 2013, PLoS genetics.

[56]  Kimberly D. Siegmund,et al.  Modeling DNA Methylation in a Population of Cancer Cells , 2008, Statistical applications in genetics and molecular biology.

[57]  Lawrence D True,et al.  Human cancers express a mutator phenotype , 2006, Proceedings of the National Academy of Sciences.

[58]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.