Models of bacterial leaching

[1]  R. F. Unz,et al.  Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters , 1981, Applied and environmental microbiology.

[2]  L. Murr,et al.  DIRECT OBSERVATIONS OF BACTERIA AND QUANTITATIVE STUDIES OF THEIR CATALYTIC ROLE IN THE LEACHING OF LOW-GRADE, COPPER-BEARING WASTE , 1978 .

[3]  B. Christensen The role of extracellular polysaccharides in biofilms , 1989 .

[4]  K. K. Phull,et al.  Biological fixed-film systems , 1990 .

[5]  O. Tuovinen,et al.  Kinetics of Sulfur Oxidation at Suboptimal Temperatures , 1990, Applied and environmental microbiology.

[6]  D. W. Duncan,et al.  Continuous culture of Thiobacillus ferrooxidans on a zinc sulfide concentrate , 1975 .

[7]  W. Uhl,et al.  Continuous microbial desulfurization of coal—application of a multistage slurry reactor and analysis of the interactions of microbial and chemical kinetics , 1989, Biotechnology and bioengineering.

[8]  A. L. Wezel,et al.  Advances in Biotechnological Processes , 1984 .

[9]  F. Lawson,et al.  Kinetics of the liquid‐phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidens , 1970 .

[10]  A. E. Torma,et al.  Biotechnology in hydrometallurgical processes , 1984 .

[11]  H. M. Tsuchiya,et al.  Kinetics of the Removal of Iron Pyrite from Coal by Microbial Catalysis , 1981, Applied and environmental microbiology.

[12]  Y. Sakurai,et al.  Bacterial pyrite oxidation III. Adsorption of Thiobacillus ferrooxidans cells on solid surfaces and its effect on iron release from pyrite , 1984 .

[13]  H. Ehrlich,et al.  Microbial Formation and Degradation of Minerals , 1964 .

[14]  L. Murr,et al.  Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade waste , 1978 .

[15]  M. Beyer,et al.  Influence of pulp density and bioreactor design on microbial desulphurization of coal , 1986, Applied Microbiology and Biotechnology.

[16]  D. Karamanev,et al.  Influence of some physicochemical parameters on bacterial activity of biofilm: Ferrous iron oxidation by Thiobacillus ferrooxidans , 1988, Biotechnology and bioengineering.

[17]  K. Natarajan Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans , 1992, Biotechnology and bioengineering.

[18]  M. Silver,et al.  Ore leaching by bacteria. , 1980, Annual review of microbiology.

[19]  F. Kargı,et al.  A dynamic mathematical model for microbial removal of pyritic sulfur from coal , 1984, Biotechnology and bioengineering.

[20]  K. Natarajan Electrochemical aspects of bioleaching multisulfide minerals , 1988 .

[21]  O. Tuovinen,et al.  Temperature Effects on Bacterial Leaching of Sulfide Minerals in Shake Flask Experiments , 1991, Applied and environmental microbiology.

[22]  D A Wallis,et al.  Analysis of a continuous, aerobic, fixed‐film bioreactor. I. Steady‐state behavior , 1984, Biotechnology and bioengineering.

[23]  W. Pryor Free Radicals in Biology , 1976 .

[24]  N. Gale,et al.  Evidence for the Calvin Cycle and Hexose Monophosphate Pathway in Thiobacillus ferrooxidans , 1967, Journal of bacteriology.

[25]  F. Kargı,et al.  Removal of Sulfur Compounds from Coal by the Thermophilic Organism Sulfolobus acidocaldarius , 1982, Applied and environmental microbiology.

[26]  H. Iwasaki,et al.  SOME PROPERTIES OF CELL-SULFUR ADHESION IN THIOBACILLUS THIOOXIDANS , 1979 .

[27]  W J Ingledew,et al.  Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. , 1982, Biochimica et biophysica acta.

[28]  A. Myerson,et al.  The adsorption of Thiobacillus ferrooxidans on coal surfaces , 1986, Biotechnology and bioengineering.

[29]  W. Salomons,et al.  Chemistry and biology of solid waste: Dredged material and mine tailings , 1988 .

[30]  Peter A. Wilderer,et al.  Structure and function of biofilms. , 1989 .

[31]  P. Romero,et al.  Growth of Thiobacillus ferrooxidans on Elemental Sulfur , 1987, Applied and environmental microbiology.

[32]  Lawrence E Murr,et al.  Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, with A. E. Torma and J. A. Brierly , Academic Press, New York, , 1978 .

[33]  K. S. Gandhi,et al.  Modelling of Fe2 + oxidation by Thiobacillus ferrooxidans , 1990, Applied Microbiology and Biotechnology.

[34]  H. Tributsch,et al.  Semiconductor-electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties: Aspects of bacterial leaching , 1981 .

[35]  R. Espejo,et al.  Growth of free and attached Thiobacillus ferrooxidans in ore suspension , 1987, Biotechnology and bioengineering.

[36]  H. Tributsch,et al.  Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps: Semiconductor-electrochemical aspects of bacterial leaching , 1981 .

[37]  G. Andrews The selective adsorption of Thiobacilli to dislocation sites on pyrite surfaces. , 1988, Biotechnology and bioengineering.

[38]  J. Costerton,et al.  The role of Thiobacillus albertis glycocalyx in the adhesion of cells to elemental sulfur. , 1984, Canadian journal of microbiology.

[39]  C. Mustin,et al.  Corrosion and Electrochemical Oxidation of a Pyrite by Thiobacillus ferrooxidans , 1992, Applied and environmental microbiology.

[40]  A. Myerson,et al.  The adsorption of Thiobacillus ferrooxidans on solid particles. , 1983, Biotechnology and bioengineering.

[41]  T. D. Brock Thermophiles : general, molecular, and applied microbiology , 1986 .

[42]  J. Radovich,et al.  Enhancement of growth and ferrous iron oxidation rates of T. Ferrooxidans by electrochemical reduction of ferric iron , 1986, Biotechnology and bioengineering.

[43]  R. F. Unz,et al.  Growth Kinetics of Attached Iron-Oxidizing Bacteria , 1985, Applied and Environmental Microbiology.

[44]  Y. Konishi,et al.  Bacterial dissolution of pyrite by Thiobacillus ferrooxidans , 1990 .

[45]  F. Boogerd,et al.  Microbial desulfurization of coal. , 1992 .

[46]  C. Brierley,et al.  Microbial Mineral Recovery , 1990 .

[47]  A. Myerson,et al.  Continuous bacterial coal desulfurization employing Thiobacillus ferrooxidans , 1984, Biotechnology and bioengineering.

[48]  O. Tuovinen,et al.  Microbiological Oxidation of Ferrous Iron at Low Temperatures , 1989, Applied and environmental microbiology.

[49]  L. Holuigue,et al.  CO2 Fixation by Mineral‐Leaching Bacteria: Characteristics of the Ribulose Bisphosphate Carboxylase‐Oxygenase of ThiobaciIlus ferrooxidans , 1987 .

[50]  D. W. Duncan,et al.  A growth model for the continuous microbiological leaching of a zinc sulfide concentrate by Thiobacillus ferrooxidans , 1985, Biotechnology and bioengineering.

[51]  Murray Moo-Young,et al.  Comprehensive biotechnology : the principles, applications, and regulations of biotechnology in industry, agriculture, and medicine , 1987 .

[52]  O. Tuovinen,et al.  Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans , 1971 .

[53]  O. Tuovinen,et al.  Sorption of Thiobacillus ferrooxidans to particulate material. , 1983, Biotechnology and bioengineering.

[54]  S. Ohgaki,et al.  Kinetics of attached microbial growth in a continuous stirred tank reactor , 1978 .

[55]  G. Hansford,et al.  Batch and continous biooxidation kinetics of a refractory gold-bearing pyrite concentrate , 1992 .

[56]  J. Brierley,et al.  Microorganisms in reclamation of metals. , 1986, Annual review of microbiology.

[57]  A. Myerson,et al.  Growth models of the continuous bacterial leaching of iron pyrite by Thiobacillus ferrooxidans , 1982, Biotechnology and bioengineering.

[58]  O. Tuovinen,et al.  Characterization of Jarosite Formed upon Bacterial Oxidation of Ferrous Sulfate in a Packed-Bed Reactor , 1988, Applied and environmental microbiology.

[59]  Biological leaching of inorganic materials , 1989 .

[60]  R. J. Heckly CHAPTER 4 – Free Radicals in Dry Biological Systems , 1976 .

[61]  D. Karamanev Model of the biofilm structure of Thiobacillus ferrooxidans , 1991 .

[62]  L. Murr,et al.  Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides , 1983 .

[63]  A. E. Torma,et al.  Oxidation of stibnite byThiobacillus ferrooxidans , 2006, Antonie van Leeuwenhoek.

[64]  G. Andrews,et al.  Bacterial coal desulfurization , 1982 .

[65]  P. Dugan,et al.  Inhibitory effects of particulate materials in growing cultures of Thiobacillus ferrooxidans , 1981 .

[66]  M. Silver METABOLIC MECHANISMS OF IRON-OXIDIZING THIOBACILLI , 1978 .

[67]  M. Todd,et al.  ISOLATION AND TEMPERATURE CHARACTERIZATION OF PSYCHROTROPHIC STRAINS OF THIOBACILLUS FERROOXIDANS FROM THE ENVIRONMENT OF A URANIUM MINE , 1986 .

[68]  M. Silverman Mechanism of Bacterial Pyrite Oxidation , 1967, Journal of bacteriology.

[69]  C. Jones,et al.  FACTORS AFFECTING METABOLISM AND FERROUS IRON OXIDATION IN SUSPENSIONS AND BATCH CULTURES OF THIOBACILLUS FERROOXIDANS: RELEVANCE TO FERRIC IRON LEACH SOLUTION REGENERATION , 1978 .

[70]  M. Valkova-Valchanova,et al.  Chemical reactions important in bioleaching and bioaccumulation , 1986 .

[71]  D. W. Duncan,et al.  The effect of carbon dioxide and particle surface area on the microbiological leaching of a zinc sulfide concentrate , 1972 .