Multichannel Porous TiO2 Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance.

TiO2 as an anode for sodium-ion batteries (NIBs) has attracted much recent attention, but poor cyclability and rate performance remain problematic owing to the intrinsic electronic conductivity and the sluggish diffusivity of Na ions in the TiO2 matrix. Herein, a simple process is demonstrated to improve the sodium storage performance of TiO2 by fabricating a 1D, multichannel, porous binary-phase anatase-TiO2 -rutile-TiO2 composite with oxygen-deficient and high grain-boundary density (denoted as a-TiO2-x /r-TiO2-x ) via electrospinning and subsequent vacuum treatment. The introduction of oxygen vacancies in the TiO2 matrix enables enhanced intrinsic electronic conductivity and fast sodium-ion diffusion kinetics. The porous structure offers easy access of the liquid electrolyte and a short transport path of Na+ through the pores toward the TiO2 nanoparticle. Furthermore, the high density of grain boundaries between the anatase TiO2 and rutile TiO2 offer more interfaces for a novel interfacial storage. The a-TiO2-x /r-TiO2-x shows excellent long cycling stability (134 mAh g-1 at 10 C after 4500 cycles) and superior rate performance (93 mAh g-1 after 4500 cycles at 20 C) for sodium-ion batteries. This simple and effective process could serve as a model for the modification of other materials applied in energy storage systems and other fields.

[1]  A. Rao,et al.  An Iodine Quantum Dots Based Rechargeable Sodium–Iodine Battery , 2017 .

[2]  Jun Chen,et al.  Graphene‐Rich Wrapped Petal‐Like Rutile TiO2 tuned by Carbon Dots for High‐Performance Sodium Storage , 2016, Advanced materials.

[3]  Bingan Lu,et al.  Covalent sulfur for advanced room temperature sodium-sulfur batteries , 2016 .

[4]  Xiaobo Ji,et al.  Size-Tunable Olive-Like Anatase TiO2 Coated with Carbon as Superior Anode for Sodium-Ion Batteries. , 2016, Small.

[5]  Yan Yu,et al.  Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries. , 2016, Small.

[6]  Zhenxiang Cheng,et al.  Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[7]  Yan Yu,et al.  Superior Sodium Storage in Na2Ti3O7 Nanotube Arrays through Surface Engineering , 2016 .

[8]  M. Xing,et al.  Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped , 2016 .

[9]  Junying Zhang,et al.  Defect Engineering of Air-Treated WO3 and Its Enhanced Visible-Light-Driven Photocatalytic and Electrochemical Performance , 2016 .

[10]  Bingan Lu,et al.  Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries. , 2016, Small.

[11]  Yan Yu,et al.  Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network. , 2016, Small.

[12]  Yan Yao,et al.  Flexible electrode for long-life rechargeable sodium-ion batteries: effect of oxygen vacancy in MoO3−x , 2016 .

[13]  Xiaobo Ji,et al.  Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. , 2016, ACS applied materials & interfaces.

[14]  Yan Yu,et al.  Self‐Supported Nanotube Arrays of Sulfur‐Doped TiO2 Enabling Ultrastable and Robust Sodium Storage , 2016, Advanced materials.

[15]  W. Tremel,et al.  Extraordinary Performance of Carbon‐Coated Anatase TiO2 as Sodium‐Ion Anode , 2015, Advanced energy materials.

[16]  Zhichuan J. Xu,et al.  Facile Aluminum Reduction Synthesis of Blue TiO2 with Oxygen Deficiency for Lithium-Ion Batteries. , 2015, Chemistry.

[17]  Jong‐Sung Yu,et al.  A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production , 2015 .

[18]  Yongni Li,et al.  Yeast bio-template synthesis of porous anatase TiO2 and potential application as an anode for sodium-ion batteries , 2015 .

[19]  Xiaobo Ji,et al.  Ti3+ Self‐Doped Dark Rutile TiO2 Ultrafine Nanorods with Durable High‐Rate Capability for Lithium‐Ion Batteries , 2015 .

[20]  Xiaoyun Fan,et al.  Facile Synthesis of Defective TiO2−x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis , 2015, Scientific Reports.

[21]  Xiaobo Ji,et al.  Enhanced sodium storage behavior of carbon coated anatase TiO2 hollow spheres , 2015 .

[22]  Ji-Won Jung,et al.  Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries , 2015, Scientific Reports.

[23]  Y. Qiu,et al.  The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites , 2015 .

[24]  Jiwei Zhang,et al.  Effect of surface/bulk oxygen vacancies on the structure and electrochemical performance of TiO2 nanoparticles , 2015 .

[25]  Jang‐Yeon Hwang,et al.  Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes , 2015 .

[26]  Yan Yu,et al.  A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance: NaTi2(PO4)3 as an example. , 2015, Nanoscale.

[27]  S. Dou,et al.  Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries , 2015 .

[28]  Yang Xu,et al.  Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. , 2015, Angewandte Chemie.

[29]  Xiaohong Xu,et al.  Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries. , 2015, ACS applied materials & interfaces.

[30]  Weifeng Zhang,et al.  Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. , 2015, Chemical communications.

[31]  L. Gu,et al.  Synthesis of TiOx Nanotubular Arrays with Oxygen Defects as High‐Performance Anodes for Lithium‐Ion Batteries , 2015 .

[32]  Xiaobo Ji,et al.  Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries , 2015 .

[33]  W. Cao,et al.  An insight into the role of oxygen vacancy in hydrogenated TiO₂ nanocrystals in the performance of dye-sensitized solar cells. , 2015, ACS applied materials & interfaces.

[34]  Yu Zhu,et al.  Fabrication of porous carbon/TiO₂ composites through polymerization-induced phase separation and use as an anode for Na-ion batteries. , 2014, ACS applied materials & interfaces.

[35]  E. Coker,et al.  Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO(3). , 2014, ACS applied materials & interfaces.

[36]  G. De,et al.  Electrospun anatase TiO2 nanofibers with ordered mesoporosity , 2014 .

[37]  Hong Liu,et al.  Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. , 2014, Chemical Society reviews.

[38]  G. Qin,et al.  Design of nitrogen doped graphene grafted TiO2 hollow nanostructures with enhanced sodium storage performance , 2014 .

[39]  Seung M. Oh,et al.  High electrochemical performances of microsphere C-TiO₂ anode for sodium-ion battery. , 2014, ACS applied materials & interfaces.

[40]  H. Fu,et al.  Ordered mesoporous black TiO(2) as highly efficient hydrogen evolution photocatalyst. , 2014, Journal of the American Chemical Society.

[41]  Kepeng Song,et al.  Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. , 2014, Nano letters.

[42]  Chong Seung Yoon,et al.  Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. , 2014, Nano letters.

[43]  W. Schuhmann,et al.  Ammonia-annealed TiO2 as a negative electrode material in li-ion batteries: N doping or oxygen deficiency? , 2013, Chemistry.

[44]  Wei Zhang,et al.  Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. , 2013, Nano letters.

[45]  Huanlei Wang,et al.  Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. , 2013, Chemical communications.

[46]  Xiaobo Chen,et al.  Hydrogenated surface disorder enhances lithium ion battery performance , 2013 .

[47]  B. Scrosati,et al.  Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries , 2013 .

[48]  Yan Yu,et al.  Multichannel hollow TiO2 nanofibers fabricated by single-nozzle electrospinning and their application for fast lithium storage , 2013 .

[49]  Palani Balaya,et al.  Na2Ti3O7: an intercalation based anode for sodium-ion battery applications , 2013 .

[50]  Young-Min Choi,et al.  Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. , 2012, ACS nano.

[51]  Andreas Stein,et al.  Porous Electrode Materials for Lithium‐Ion Batteries – How to Prepare Them and What Makes Them Special , 2012 .

[52]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[53]  Ji‐Yong Shin,et al.  Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .

[54]  L. Nazar,et al.  Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries , 2011 .

[55]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[56]  M. Xing,et al.  An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. , 2011, Chemical communications.

[57]  D. Wexler,et al.  Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12‐TiO2: A Nanocomposite Anode Material for Li‐Ion Batteries , 2011 .

[58]  Yichun Liu,et al.  ZnO Hollow Nanofibers: Fabrication from Facile Single Capillary Electrospinning and Applications in Gas Sensors , 2009 .

[59]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[60]  A. Yarin,et al.  Co-electrospinning of core-shell fibers using a single-nozzle technique. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[61]  J. Dahn,et al.  Reaction of Li with Grain‐Boundary Atoms in Nanostructured Compounds , 2000 .

[62]  Wha-Tek Kim,et al.  Sub-band-gap photoresponse of Ti O 2 − x thin-film—electrolyte interface , 1984 .

[63]  D. C. Cronemeyer Infrared Absorption of Reduced Rutile Ti O 2 Single Crystals , 1959 .

[64]  D. C. Cronemeyer,et al.  The Optical Absorption and Photoconductivity of Rutile , 1951 .

[65]  Yan Yu,et al.  Generalizable Synthesis of Metal‐Sulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage , 2016, Advanced materials.

[66]  U. Paik,et al.  TiO2 as an active or supplemental material for lithium batteries , 2016 .

[67]  D. Bresser,et al.  Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles , 2015 .