Robust estimation of a maneuvering target from multiple unmanned air vehicles' measurements

When multiple UAVs collaborate to track a maneuvering target, their position measurement sensors are sometimes corrupted by noise biases (e.g. sensor drifting). In this case, the zero-mean noise assumption of the Kalman filter is therefore violated and the desired optimal estimate will not be guaranteed. In this paper, an H-infinity filter is utilized to estimate the position of the maneuvering target to compensate for non-zero-mean noise. Furthermore, the constrained H-infinity filter is shown to be superior to the Kalman filter.

[1]  M. Athans,et al.  On the state and parameter estimation for maneuvering reentry vehicles , 1977 .

[2]  William Dale Blair,et al.  Interacting acceleration compensation algorithm for tracking maneuvering targets , 1995 .

[3]  Dennis S. Bernstein,et al.  Steady-state Kalman filtering with an H_infinity error bound , 1989 .

[4]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1991 .

[5]  Y. Bar-Shalom,et al.  Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm , 1989 .

[6]  P. Mookerjee,et al.  Reduced state estimators for consistent tracking of maneuvering targets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Naval Surface Interacting Multiple Bias Model Algorithm With Application To Tracking Maneuvering Targets , 1992 .

[8]  R.J. Polge,et al.  Performance of the g-h Filter for Tracking Maneuvering Targets , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Ali T. Alouani,et al.  A two-stage Kalman estimator for state estimation in the presence of random bias and for tracking maneuvering targets , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[10]  D. Bernstein,et al.  Steady-state Kalman filtering with an H ∞ error bound , 1989 .

[11]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[12]  Arthur J. Krener,et al.  Kalman-bucy and minimax filtering , 1980 .

[13]  Peter M. Kachmar,et al.  Space Navigation Applications , 1995 .

[14]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[15]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[16]  W D Blair,et al.  Use of Target-Oriented Process Noise in Tracking Maneuvering Targets , 1992 .

[17]  Decision Systems.,et al.  Tracking maneuvering targets using H-[infinity] filters , 1994 .

[18]  Yan Yang,et al.  Maneuvering Target Tracking Based on ANFIS and UKF , 2008, 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA).

[19]  Theodore R. Rice,et al.  Interacting multiple model filter for tracking maneuvering targets in spherical coordinates , 1991, IEEE Proceedings of the SOUTHEASTCON '91.

[20]  Wei Liu,et al.  Tracking maneuvering targets via an ARMA type filter , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[21]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[22]  T. Kirubarajan,et al.  Application of the Kalman-Levy Filter for Tracking Maneuvering Targets , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[23]  P.M. Djuric,et al.  Comparison of EKF- and PF-based methods in tracking maneuvering targets , 2006, 2006 IEEE Aerospace Conference.

[24]  William Dale Blair,et al.  Design of nearly constant velocity track filters for tracking maneuvering targets , 2008, 2008 11th International Conference on Information Fusion.

[25]  W. Blair,et al.  Use of a kinematic constraint in tracking constant speed, maneuvering targets , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[26]  T. Başar Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses , 2001 .

[27]  R. Singer Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets , 1970, IEEE Transactions on Aerospace and Electronic Systems.

[28]  P. Khargonekar,et al.  State-space solutions to standard H2 and H(infinity) control problems , 1989 .

[29]  W. Blair,et al.  Use of a kinematic constraint in tracking constant speed, maneuvering targets , 1993, IEEE Trans. Autom. Control..

[30]  P. Khargonekar,et al.  H∞ control and filtering for sampled-data systems , 1993, IEEE Trans. Autom. Control..

[31]  Behzad Moshiri,et al.  Second-order EKF and Unscented Kalman Filter Fusion for Tracking Maneuvering Targets , 2007, 2007 IEEE International Conference on Information Reuse and Integration.