Asymmetric Hybrid Polyoxometalates: A Platform for Multifunctional Redox‐Active Nanomaterials

Abstract Access to asymmetrically functionalized polyoxometalates is a grand challenge as it could lead to new molecular nanomaterials with multiple or modular functionality. Now, a simple one‐pot synthetic approach to the isolation of an asymmetrically functionalized organic–inorganic hybrid Wells–Dawson polyoxometalate in good yield is presented. The cluster bears two organophosphonate moieties with contrasting physical properties: a chelating metal‐binding group, and a long aliphatic chain that facilitates solvent‐dependent self‐assembly into soft nanostructures. The orthogonal properties of the modular system are effectively demonstrated by controlled assembly of POM‐based redox‐active nanoparticles. This simple, high‐yielding synthetic method is a promising new approach to the preparation of multi‐functional hybrid metal oxide clusters, supermolecular systems, and soft‐nanomaterials.

[1]  Graham N. Newton,et al.  Tuning the electronic structure of organic–inorganic hybrid polyoxometalates: The crucial role of the covalent linkage , 2018, Polyhedron.

[2]  C. Troufflard,et al.  Control of the hierarchical self-assembly of polyoxometalate-based metallomacrocycles by redox trigger and solvent composition , 2018, Proceedings of the National Academy of Sciences.

[3]  Graham N. Newton,et al.  A Simple Approach to the Visible-Light Photoactivation of Molecular Metal Oxides. , 2017, Inorganic chemistry.

[4]  Graham N. Newton,et al.  Redox-active organic-inorganic hybrid polyoxometalate micelles , 2017 .

[5]  Stefano Artin Serapian,et al.  Hierarchical Self-Assembly of Polyoxometalate-Based Hybrids Driven by Metal Coordination and Electrostatic Interactions: From Discrete Supramolecular Species to Dense Monodisperse Nanoparticles. , 2016, Journal of the American Chemical Society.

[6]  A. Dolbecq,et al.  A high fatigue resistant, photoswitchable fluorescent spiropyran-polyoxometalate-BODIPY single-molecule. , 2015, Chemical communications.

[7]  Andrew J. Surman,et al.  Configurable Nanosized Metal Oxide Oligomers via Precise "Click" Coupling Control of Hybrid Polyoxometalates. , 2015, Journal of the American Chemical Society.

[8]  C. Streb,et al.  Polyoxometalate-conductive polymer composites for energy conversion, energy storage and nanostructured sensors. , 2015, Dalton transactions.

[9]  Marie-Pierre Santoni,et al.  Covalent multi-component systems of polyoxometalates and metal complexes: Toward multi-functional organic–inorganic hybrids in molecular and material sciences , 2014 .

[10]  Wei Zhao,et al.  Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. , 2014, Angewandte Chemie.

[11]  Asen Asenov,et al.  Design and fabrication of memory devices based on nanoscale polyoxometalate clusters , 2014, Nature.

[12]  Yang-guang Li,et al.  Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. , 2014, Chemistry.

[13]  Amlan K. Pal,et al.  A light-harvesting polyoxometalate-polypyridine hybrid induces electron transfer as its Re(I) complex. , 2014, Dalton transactions.

[14]  Andrew J. Surman,et al.  Polyoxometalate clusters integrated into peptide chains and as inorganic amino acids: solution- and solid-phase approaches. , 2014, Angewandte Chemie.

[15]  J. Fielden,et al.  Polyoxometalate Multi‐Electron‐Transfer Catalytic Systems for Water Splitting , 2014 .

[16]  Andrew J. Surman,et al.  A collection of robust methodologies for the preparation of asymmetric hybrid Mn–Anderson polyoxometalates for multifunctional materials , 2013 .

[17]  M. Malacria,et al.  Regioselective Double Organic Functionalization of Polyoxotungstates through Electrophilic Addition of Aromatic Isocyanates to [P2W17O61(SnR)]7–† , 2013 .

[18]  T. Lian,et al.  Long lived charge separation in iridium(III)-photosensitized polyoxometalates: synthesis, photophysical and computational studies of organometallic–redox tunable oxide assemblies , 2013 .

[19]  Yu-Fei Song,et al.  Recent advances on polyoxometalate-based molecular and composite materials. , 2012, Chemical Society reviews.

[20]  B. Matt,et al.  Functionalization and post-functionalization: a step towards polyoxometalate-based materials. , 2012, Chemical Society reviews.

[21]  C. Pradier,et al.  Bifunctional Polyoxometalates for Planar Gold Surface Nanostructuration and Protein Immobilization , 2012 .

[22]  C. Streb New trends in polyoxometalate photoredox chemistry: from photosensitisation to water oxidation catalysis. , 2012, Dalton transactions.

[23]  Zhijuan Zhang,et al.  A multifunctional organic-inorganic hybrid structure based on Mn(III)-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. , 2012, Journal of the American Chemical Society.

[24]  James E. Roberts,et al.  Inorganic-organic hybrid vesicles with counterion- and pH-controlled fluorescent properties. , 2011, Journal of the American Chemical Society.

[25]  F. Loiseau,et al.  Elaboration of covalently linked polyoxometalates with ruthenium and pyrene chromophores and characteriation of their photophysical properties. , 2011, Inorganic chemistry.

[26]  Amlan K. Pal,et al.  Discrete covalent organic-inorganic hybrids: terpyridine functionalized polyoxometalates obtained by a modular strategy and their metal complexation. , 2011, Inorganic chemistry.

[27]  Heng Wang,et al.  Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: applications in molecular cluster batteries. , 2011, Angewandte Chemie.

[28]  Gianfranco Scorrano,et al.  Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. , 2010, Nature chemistry.

[29]  C. R. Mayer,et al.  Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. , 2010, Chemical reviews.

[30]  Leroy Cronin,et al.  Polyoxometalates: building blocks for functional nanoscale systems. , 2010, Angewandte Chemie.

[31]  Leroy Cronin,et al.  Polyoxometallate als Bausteine für funktionelle Nanosysteme , 2010 .

[32]  Zhiyong Tang,et al.  Reversible photoswitchable fluorescence in thin films of inorganic nanoparticle and polyoxometalate assemblies. , 2010, Journal of the American Chemical Society.

[33]  N. Gadegaard,et al.  Micropatterned surfaces with covalently grafted unsymmetrical polyoxometalate-hybrid clusters lead to selective cell adhesion. , 2009, Journal of the American Chemical Society.

[34]  L. Cronin,et al.  Sorting the assemblies of unsymmetrically covalently functionalized mn-anderson polyoxometalate clusters with mass spectrometry. , 2008, Inorganic chemistry.

[35]  Johannes A A W Elemans,et al.  Self-assembled nanoreactors. , 2005, Chemical reviews.

[36]  Graham N. Newton,et al.  Orbital Engineering: Photoactivation of an Organofunctionalized Polyoxotungstate. , 2017, Chemistry.

[37]  K. Poeppelmeier,et al.  Comprehensive inorganic chemistry II : from elements to applications , 2013 .

[38]  L. Cronin,et al.  Polyoxometalates: Synthesis and Structure – From Building Blocks to Emergent Materials , 2013 .

[39]  Achim Müller,et al.  Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines , 1991 .

[40]  A. Müller,et al.  Chemie der Polyoxometallate: Aktuelle Variationen über ein altes Thema mit interdisziplinären Bezügen , 1991 .