Almost global problems in the LOCAL model
暂无分享,去创建一个
Jukka Suomela | Sebastian Brandt | Dennis Olivetti | Alkida Balliu | S. Brandt | J. Suomela | D. Olivetti | A. Balliu
[1] Richard Cole,et al. Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking , 2018, Inf. Control..
[2] Jukka Suomela,et al. New classes of distributed time complexity , 2017, STOC.
[3] Patric R. J. Östergård,et al. LCL Problems on Grids , 2017, PODC.
[4] Nathan Linial,et al. Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..
[5] Nico Eigenmann. ( Δ + 1 )-COLORING IN LINEAR ( IN Δ ) TIME , 2009 .
[6] Mika Göös,et al. Locally Checkable Proofs in Distributed Computing , 2016, Theory Comput..
[7] Leonid Barenboim,et al. Deterministic (Δ + 1)-Coloring in Sublinear (in Δ) Time in Static, Dynamic, and Faulty Networks , 2016, J. ACM.
[8] Aravind Srinivasan,et al. The local nature of Δ-coloring and its algorithmic applications , 1995, Comb..
[9] Alessandro Panconesi,et al. Some simple distributed algorithms for sparse networks , 2001, Distributed Computing.
[10] Fabian Kuhn,et al. On Derandomizing Local Distributed Algorithms , 2017, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
[11] Jukka Suomela,et al. A lower bound for the distributed Lovász local lemma , 2015, STOC.
[12] M. Kaufmann. What Can Be Computed Locally ? , 2003 .
[13] J. Hartmanis,et al. On the Computational Complexity of Algorithms , 1965 .
[14] Seth Pettie,et al. Distributed Edge Coloring and a Special Case of the Constructive Lovász Local Lemma , 2019, ACM Trans. Algorithms.
[15] Tsvi Kopelowitz,et al. An Exponential Separation between Randomized and Deterministic Complexity in the LOCAL Model , 2019, SIAM J. Comput..
[16] Leonid Barenboim,et al. Distributed (δ+1)-coloring in linear (in δ) time , 2009, STOC '09.
[17] Pierre Fraigniaud,et al. Local Conflict Coloring , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[18] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[19] Seth Pettie,et al. The Complexity of Distributed Edge Coloring with Small Palettes , 2017, SODA.
[20] Salil P. Vadhan,et al. Computational Complexity , 2005, Encyclopedia of Cryptography and Security.
[21] David Peleg,et al. Distributed Computing: A Locality-Sensitive Approach , 1987 .
[22] Seth Pettie,et al. A Time Hierarchy Theorem for the LOCAL Model , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[23] Hsin-Hao Su,et al. Distributed Degree Splitting, Edge Coloring, and Orientations , 2016, SODA.