Collocation methods for nonlinear convolution Volterra integral equations with multiple proportional delays

In this paper, we apply the collocation methods to a class of nonlinear convolution Volterra integral equations with multiple proportional delays (NCVIEMPDs). We shall present the existence, uniqueness and regularity properties of analytic solution for this type equation, and then analyze the convergence and superconvergence properties of the collocation solution. The numerical results verify our theoretical analysis.

[1]  Hermann Brunner,et al.  Optimal Superconvergence Orders of Iterated Collocation Solutions for Volterra Integral Equations with Vanishing Delays , 2005, SIAM J. Numer. Anal..

[2]  Lothar Von Wolfersdorf Autoconvolution equations of the third kind with Abel integral , 2011 .

[3]  P. P. B. Eggermont,et al.  Fast Numerical Solution of Singular Integral Equations , 1994 .

[4]  Tao Tang,et al.  Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel , 2010, Math. Comput..

[5]  Lothar Berg,et al.  On a Class of Generalized Autoconvolution Equations of the Third Kind , 2005 .

[6]  E. Russo,et al.  Fast Runge–Kutta methods for nonlinear convolution systems of Volterra integral equations , 2007 .

[7]  Z. Jackiewicz,et al.  Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels , 2007 .

[8]  José Alberto Cuminato,et al.  On the uniform convergence of a collocation method for a class of singular integral equations , 1987 .

[9]  Ran Zhang,et al.  Analysis of collocation solutions for nonstandard Volterra integral equations , 2012 .

[10]  Ishtiaq Ali,et al.  Spectral methods for pantograph-type differential and integral equations with multiple delays , 2009 .

[11]  Germund Dahlquist,et al.  Numerical methods in scientific computing , 2008 .

[12]  Hermann Brunner,et al.  A posteriori error estimates of discontinuous Galerkin methods for non-standard Volterra integro-differential equations , 2006 .

[13]  Kaili Xiang,et al.  An Integral Equation Method with High-Order Collocation Implementations for Pricing American Put Options , 2010 .

[14]  Arieh Iserles,et al.  On the generalized pantograph functional-differential equation , 1993, European Journal of Applied Mathematics.

[15]  Jaan Janno Nonlinear Equations with Operators Satisfying Generalized Lipschitz Conditions in Scales , 1999 .

[16]  M. Z. Liu,et al.  Properties of analytic solution and numerical solution of multi-pantograph equation , 2004, Appl. Math. Comput..