Quantum coherence behaviors of fermionic system in non-inertial frame

In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.

[1]  Zhiming Huang,et al.  Optimal Protection of Quantum Coherence in Noisy Environment , 2017 .

[2]  M. Ramzan,et al.  Decoherence dynamics of geometric measure of quantum discord and measurement induced nonlocality for noninertial observers at finite temperature , 2012, Quantum Inf. Process..

[3]  J. Sperling,et al.  Resources for Quantum Technology: Nonclassicality versus Entanglement , 2014 .

[4]  G. Gour,et al.  Low-temperature thermodynamics with quantum coherence , 2014, Nature Communications.

[5]  Convergence of fermionic-field entanglement at infinite acceleration in relativistic quantum information , 2011, 1111.6070.

[6]  Javier Prior,et al.  The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes , 2013, Nature Physics.

[7]  M. Montero,et al.  Entanglement of arbitrary spin fields in noninertial frames , 2011, 1105.0894.

[8]  J. León,et al.  Quantum entanglement produced in the formation of a black hole , 2010, 1007.2858.

[9]  Zhe Sun,et al.  Geometric measure of quantum discord under decoherence , 2010, Quantum Inf. Comput..

[10]  Zhiming Huang,et al.  Dynamics of quantum correlation and coherence in de Sitter universe , 2017, Quantum Inf. Process..

[11]  Eylee Jung,et al.  Tripartite entanglement in a noninertial frame , 2010, 1010.6154.

[12]  David Edward Bruschi,et al.  Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion , 2011, 1105.1875.

[13]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[14]  Fermionic entanglement ambiguity in noninertial frames , 2011, 1104.2307.

[15]  Heng Fan,et al.  Irreversible degradation of quantum coherence under relativistic motion , 2016, 1601.03238.

[16]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[17]  Zhiming Huang Quantum Correlation and Coherence in the Background of Dilaton Black Hole , 2017 .

[18]  M. Ramzan,et al.  Quantum discord amplification of fermionic systems in an accelerated frame , 2014, Quantum Inf. Process..

[19]  Jieci Wang,et al.  Classical correlation and quantum discord sharing of Dirac fields in noninertial frames , 2009, 0912.4129.

[20]  David Edward Bruschi,et al.  Unruh effect in quantum information beyond the single-mode approximation , 2010, 1007.4670.

[21]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[22]  Heng Fan,et al.  Influence of relativistic effects on satellite-based clock synchronization , 2015, 1501.01478.

[23]  S. Luo,et al.  Geometric measure of quantum discord , 2010 .

[24]  Zhiming Huang,et al.  Payoffs and coherence of a quantum two-player game under noisy environment , 2017 .

[25]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[26]  David Edward Bruschi,et al.  Motion generates entanglement , 2012, 1201.0549.

[27]  Eric Chitambar,et al.  Relating the Resource Theories of Entanglement and Quantum Coherence. , 2015, Physical review letters.

[28]  Gregory D. Scholes,et al.  Delocalization and Entanglement: A Method of Developing Analytical Multipartite Measures for Mixed W-like States , 2014 .

[29]  Gaussian quantum steering and its asymmetry in curved spacetime , 2015, 1511.07572.

[30]  Haozhen Situ,et al.  Dynamics of relative entropy of coherence under Markovian channels , 2016, Quantum Inf. Process..

[31]  Martin B Plenio,et al.  Chemical compass model for avian magnetoreception as a quantum coherent device. , 2013, Physical review letters.

[32]  E. Martín-Martínez,et al.  Unveiling quantum entanglement degradation near a Schwarzschild black hole , 2010, 1006.1394.

[33]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[34]  Heng Fan,et al.  Quantum coherence and correlations in quantum system , 2015, Scientific reports.

[35]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[36]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[37]  Franco Nori,et al.  Witnessing Quantum Coherence: from solid-state to biological systems , 2012, Scientific Reports.

[38]  Martin B. Plenio,et al.  A note on coherence power of n-dimensional unitary operators , 2016, Quantum Inf. Comput..

[39]  Zhiming Huang,et al.  Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field , 2017 .

[40]  Davide Girolami,et al.  Converting Coherence to Quantum Correlations. , 2015, Physical review letters.

[41]  Daniel R. Terno,et al.  Quantum Information and Relativity Theory , 2002, quant-ph/0212023.

[42]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[43]  J. Åberg Catalytic coherence. , 2013, Physical Review Letters.

[44]  W. Vogel,et al.  Witnessing the degree of nonclassicality of light , 2014, 1406.7094.

[45]  Diego Paiva Pires,et al.  Geometric lower bound for a quantum coherence measure , 2015, 1501.05271.

[46]  Jiliang Jing,et al.  Degradation of nonmaximal entanglement of scalar and Dirac fields in noninertial frames , 2008, 0802.1238.

[47]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[48]  E. Martín-Martínez,et al.  Fermionic entanglement that survives a black hole , 2009, 0907.1960.

[49]  Scully,et al.  Enhancement of the index of refraction via quantum coherence. , 1991, Physical review letters.

[50]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[51]  Zhiming Huang,et al.  Non-Markovian dynamics of quantum coherence of two-level system driven by classical field , 2017, Quantum Inf. Process..

[52]  E. Martín-Martínez,et al.  Redistribution of particle and antiparticle entanglement in noninertial frames , 2011, 1102.4759.

[53]  Vahid Karimipour,et al.  Cohering and decohering power of quantum channels , 2015, 1506.02304.

[54]  Florian Mintert,et al.  A quantitative theory of coherent delocalization , 2013, 1310.6962.

[55]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[56]  E. Martín-Martinez Relativistic Quantum Information: developments in Quantum Information in general relativistic scenarios , 2011, 1106.0280.

[57]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[58]  Ming-Liang Hu,et al.  Cohering Power of Unitary Operations and De-cohering of Quantum operations , 2015 .

[59]  M. Ramzan,et al.  Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames , 2011, Quantum Inf. Process..

[60]  Heng Fan,et al.  Coherence extraction from measurement-induced disturbance , 2015 .

[61]  Davide Girolami,et al.  Observable measure of quantum coherence in finite dimensional systems. , 2014, Physical review letters.

[62]  Eric G. Brown,et al.  Vanishing geometric discord in noninertial frames , 2012, 1205.1268.

[63]  P. Alsing,et al.  Entanglement of Dirac fields in noninertial frames , 2006, quant-ph/0603269.

[64]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[65]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[66]  Xing Xiao,et al.  Quantum coherence in multipartite systems , 2015, 1506.01773.

[67]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[68]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[69]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[70]  Maciej Lewenstein,et al.  Trace distance measure of coherence , 2015, ArXiv.

[71]  Heng Fan,et al.  Quantum discord and measurement-induced disturbance in the background of dilaton black holes , 2014 .