Bayesian quantile regression and variable selection for partial linear single-index model: Using free knot spline
暂无分享,去创建一个
Shanshan Wang | Zhihong Zou | Yang Yu | Z. Zou | Shanshan Wang | Yang Yu
[1] Hai-Bin Wang,et al. Bayesian estimation and variable selection for single index models , 2009, Comput. Stat. Data Anal..
[2] Adrian F. M. Smith,et al. Automatic Bayesian curve fitting , 1998 .
[3] Peng Shi,et al. A Bayesian quantile regression model for insurance company costs data , 2016 .
[4] Jianqing Fan,et al. Generalized Partially Linear Single-Index Models , 1997 .
[5] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[6] Getachew A Dagne,et al. Bayesian semiparametric zero-inflated Poisson model for longitudinal count data. , 2010, Mathematical biosciences.
[7] Rahim Alhamzawi,et al. Bayesian Elastic Net Tobit Quantile Regression , 2016, Commun. Stat. Simul. Comput..
[8] Taeryon Choi,et al. On asymptotic properties of Bayesian partially linear models , 2013 .
[9] Nian-Sheng Tang,et al. A semiparametric Bayesian approach to generalized partial linear mixed models for longitudinal data , 2012, Comput. Stat. Data Anal..
[10] Jie Guo,et al. Variable selection in high-dimensional partially linear additive models for composite quantile regression , 2013, Comput. Stat. Data Anal..
[11] Hu Yang,et al. A robust and efficient estimation and variable selection method for partially linear single-index models , 2014, J. Multivar. Anal..
[12] Taeryon Choi,et al. Asymptotic properties of posterior distributions in nonparametric regression with non-Gaussian errors , 2009 .
[13] A. Gelfand,et al. Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process , 2012 .
[14] Rahim Alhamzawi,et al. Conjugate priors and variable selection for Bayesian quantile regression , 2013, Comput. Stat. Data Anal..
[15] Hai-Bin Wang,et al. Bayesian analysis of generalized partially linear single-index models , 2013, Comput. Stat. Data Anal..
[16] Mary J. Lindstrom,et al. Bayesian estimation of free-knot splines using reversible jumps , 2002, Comput. Stat. Data Anal..
[17] Jane-ling Wang,et al. Estimation for a partial-linear single-index model , 2009, 0905.2042.
[18] Jing Yang,et al. The adaptive L1-penalized LAD regression for partially linear single-index models , 2014 .
[19] Yves F. Atchadé,et al. A computational framework for empirical Bayes inference , 2011, Stat. Comput..
[20] Rahim Alhamzawi,et al. Prior elicitation and variable selection for bayesian quantile regression , 2013 .
[21] R. O’Hara,et al. A review of Bayesian variable selection methods: what, how and which , 2009 .
[22] Rahim Alhamzawi,et al. Bayesian lasso binary quantile regression , 2013, Comput. Stat..
[23] T. Lancaster,et al. Bayesian Quantile Regression , 2005 .
[24] Kazushi Ikeda,et al. An efficient sampling algorithm with adaptations for Bayesian variable selection , 2015, Neural Networks.
[25] R. Koenker,et al. Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .
[26] Ruibin Xi,et al. Bayesian regularized quantile regression , 2010 .
[27] Krzysztof Podgórski,et al. A Multivariate and Asymmetric Generalization of Laplace Distribution , 2000, Comput. Stat..
[28] Runze Li,et al. ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS. , 2010, Annals of statistics.
[29] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[30] B. Mallick. VARIABLE SELECTION FOR REGRESSION MODELS , 2016 .
[31] Rahim Alhamzawi,et al. Bayesian model selection in ordinal quantile regression , 2016, Comput. Stat. Data Anal..
[32] D. Ruppert,et al. Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .
[33] R. Koenker,et al. Regression Quantiles , 2007 .
[34] M. Schervish,et al. On posterior consistency in nonparametric regression problems , 2007 .
[35] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[36] Weihua Zhao,et al. Quantile regression and variable selection of partial linear single-index model , 2014, Annals of the Institute of Statistical Mathematics.
[37] Keming Yu,et al. Variable selection in quantile regression via Gibbs sampling , 2012 .
[38] Yi-qiang,et al. Variable Selection of Partially Linear Single-index Models , 2014 .
[39] Graciela Boente,et al. Robust estimates in generalized partially linear single-index models , 2011, TEST.