Estimating stellar birth radii and the time evolution of Milky Way’s ISM metallicity gradient

We present a semi-empirical, largely model-independent approach for estimating Galactic birth radii, r_birth, for Milky Way disk stars. The technique relies on the justifiable assumption that a negative radial metallicity gradient in the interstellar medium (ISM) existed for most of the disk lifetime. Stars are projected back to their birth positions according to the observationally derived age and [Fe/H] with no kinematical information required. Applying our approach to the AMBRE:HARPS and HARPS-GTO local samples, we show that we can constrain the ISM metallicity evolution with Galactic radius and cosmic time, [Fe/H]_ISM(r, t), by requiring a physically meaningful r_birth distribution. We find that the data are consistent with an ISM radial metallicity gradient that flattens with time from ~-0.15 dex/kpc at the beginning of disk formation, to its measured present-day value (-0.07 dex/kpc). We present several chemo-kinematical relations in terms of mono-r_birth populations. One remarkable result is that the kinematically hottest stars would have been born locally or in the outer disk, consistent with thick disk formation from the nested flares of mono-age populations and predictions from cosmological simulations. This phenomenon can be also seen in the observed age-velocity dispersion relation, in that its upper boundary is dominated by stars born at larger radii. We also find that the flatness of the local age-metallicity relation (AMR) is the result of the superposition of the AMRs of mono-r_birth populations, each with a well-defined negative slope. The solar birth radius is estimated to be 7.3+-0.6 kpc, for a current Galactocentric radius of 8 kpc.

[1]  A. Dotter,et al.  Stellar ages and masses in the solar neighbourhood: Bayesian analysis using spectroscopy and Gaia DR1 parallaxes , 2018, 1803.10875.

[2]  F. Anders,et al.  Dissecting stellar chemical abundance space with t-SNE , 2018, Astronomy & Astrophysics.

[3]  D. A. García-Hernández,et al.  Age-resolved chemistry of red giants in the solar neighbourhood , 2018, 1803.06352.

[4]  C. Kobayashi,et al.  Extragalactic archaeology with the C, N, and O chemical abundances , 2018, 1802.03353.

[5]  R. Wyse,et al.  Constraints on Radial Migration in Spiral Galaxies - II. Angular momentum distribution and preferential migration , 2018, 1801.08455.

[6]  C. Prieto,et al.  The Bulge Metallicity Distribution from the APOGEE Survey , 2017, 1712.01297.

[7]  M. Hayden,et al.  The AMBRE project: The thick thin disk and thin thick disk of the Milky Way , 2017, 1712.02358.

[8]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Churning through the Milky Way , 2017, 1711.05751.

[9]  Jeffrey D. Crane,et al.  SDSS-V: Pioneering Panoptic Spectroscopy , 2017, 1711.03234.

[10]  F. Anders,et al.  StarHorse : a Bayesian tool for determining stellar masses, ages, distances, and extinctions for field stars , 2017, 1710.09970.

[11]  M. Schultheis,et al.  Detailed Abundances for the Old Population near the Galactic Center. I. Metallicity Distribution of the Nuclear Star Cluster , 2017, 1710.08477.

[12]  L. Galbany,et al.  The shape of oxygen abundance profiles explored with MUSE: evidence for widespread deviations from single gradients , 2017, 1710.01188.

[13]  Alice C. Quillen,et al.  Migration in the shearing sheet and estimates for young open cluster migration , 2017, 1709.04801.

[14]  C. Frenk,et al.  The innate origin of radial and vertical gradients in a simulated galaxy disc , 2017, 1709.01040.

[15]  N. A. Walton,et al.  PLATO as it is: a legacy mission for Galactic archaeology , 2017, 1706.03778.

[16]  M. Tsantaki,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu , 2017, 1705.04349.

[17]  A. Recio-Blanco,et al.  The AMBRE project: Iron-peak elements in the solar neighbourhood , 2016, 1612.07622.

[18]  W. E. Kerzendorf,et al.  KMOS view of the Galactic Centre – II. Metallicity distribution of late-type stars , 2016, Monthly Notices of the Royal Astronomical Society.

[19]  H. Rix,et al.  A RADIAL AGE GRADIENT IN THE GEOMETRICALLY THICK DISK OF THE MILKY WAY , 2016, 1609.01168.

[20]  F. Baudin,et al.  Red giants observed by CoRoT and APOGEE: The evolution of the Milky Way's radial metallicity gradient , 2016, 1608.04951.

[21]  Berkeley,et al.  The structure and dynamical evolution of the stellar disc of a simulated Milky Way-mass galaxy , 2016, 1608.04133.

[22]  C. Prieto,et al.  Galactic Archaeology with asteroseismology and spectroscopy: Red giants observed by CoRoT and APOGEE , 2016, 1604.07763.

[23]  B. Gibson,et al.  Chemical separation of disc components using RAVE , 2016, 1603.09339.

[24]  M. Schultheis,et al.  When the Milky Way turned off the lights: APOGEE provides evidence of star formation quenching in our Galaxy , 2016, 1601.03042.

[25]  B. Gibson,et al.  Origin of the metallicity distribution in the thick disc , 2015, 1512.04559.

[26]  V. Springel,et al.  Vertical disc heating in Milky Way-sized galaxies in a cosmological context , 2015, 1512.02219.

[27]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: New constraints on the Galactic disc velocity dispersion and its chemical dependencies , 2015, 1509.05271.

[28]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: characterisation of the [α/Fe] sequences in the Milky Way discs , 2015, 1507.08066.

[29]  Jessica R. Lu,et al.  DISCOVERY OF LOW-METALLICITY STARS IN THE CENTRAL PARSEC OF THE MILKY WAY , 2015, 1506.07891.

[30]  D. Balser,et al.  AZIMUTHAL METALLICITY STRUCTURE IN THE MILKY WAY DISK , 2015, 1505.04090.

[31]  M. Martig,et al.  ON THE FORMATION OF GALACTIC THICK DISKS , 2015, 1502.06606.

[32]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[33]  D. Schneider,et al.  Spectro-photometric distances to stars: a general-purpose Bayesian approach , 2015, 1501.05500.

[34]  E. Athanassoula,et al.  Evolution of the Milky Way with radial motions of stars and gas II. The evolution of abundance profiles from H to Ni , 2014, 1412.4859.

[35]  L. Galbany,et al.  Census of H II regions in NGC 6754 derived with MUSE: Constraints on the metal mixing scale , 2014, 1411.4967.

[36]  A. Bijaoui,et al.  The AMBRE project: Parameterisation of FGK-type stars from the ESO:HARPS archived spectra , 2014, 1409.2258.

[37]  M. Schultheis,et al.  The Gaia-ESO Survey: metallicity and kinematic trends in the Milky Way bulge , 2014, 1408.4558.

[38]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[39]  J. Navarro,et al.  THE EFFECT OF RADIAL MIGRATION ON GALACTIC DISKS , 2014, 1405.3317.

[40]  M. Martig,et al.  Dissecting simulated disc galaxies - II. The age-velocity relation , 2014, 1405.1727.

[41]  V. Adibekyan,et al.  On the origin of stars with and without planets - Tc trends and clues to Galactic evolution , 2014, 1404.4514.

[42]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the Galactic thick to thin disc transition , 2014, 1403.7568.

[43]  C. D. Laney,et al.  On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk , 2014, 1403.6128.

[44]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[45]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk II: Variations with Galactic radius and height above the disk plane , 2014, 1401.5796.

[46]  J. Brinkmann,et al.  Chemodynamics of the Milky Way - I. The first year of APOGEE data , 2013, 1311.4549.

[47]  B. Gibson,et al.  A NEW STELLAR CHEMO–KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK , 2013, 1310.5145.

[48]  B. Gibson,et al.  Chemical gradients in the Milky Way from the RAVE data , 2013, 1309.4279.

[49]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[50]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[51]  D. Kawata,et al.  Numerical simulation of a possible origin of the positive radial metallicity gradient of the thick disk , 2013, 1308.2061.

[52]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[53]  B. Gibson,et al.  Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions , 2013, 1304.3020.

[54]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[55]  F. Combes,et al.  Signatures of radial migration in barred galaxies: Azimuthal variations in the metallicity distribution of old stars , 2013, 1301.2545.

[56]  J. Bird,et al.  INSIDE OUT AND UPSIDE DOWN: TRACING THE ASSEMBLY OF A SIMULATED DISK GALAXY USING MONO-AGE STELLAR POPULATIONS , 2013, 1301.0620.

[57]  Victor P. Debattista,et al.  The effects of radial migration on the vertical structure of Galactic discs , 2012, 1211.1982.

[58]  Pascal Jagourel,et al.  WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope , 2012, Other Conferences.

[59]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk - I. The solar vicinity , 2012, 1208.1506.

[60]  A. Quillen,et al.  Stellar Migration by Short Lived Density Peaks Arising from Interference of Spiral Density Waves in an N-body Simulation , 2012, 1207.5753.

[61]  V. Adibekyan,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program - Galactic stellar populations and planets , 2012, 1207.2388.

[62]  Bernard Muschielok,et al.  4MOST: 4-metre multi-object spectroscopic telescope , 2012, Other Conferences.

[63]  B. Gibson,et al.  Thin disc, thick disc and halo in a simulated galaxy , 2012, 1206.0740.

[64]  M. Martig,et al.  Radial migration does little for Galactic disc thickening , 2012, 1205.6475.

[65]  J. Bland-Hawthorn,et al.  Evolution of galactic discs: multiple patterns, radial migration, and disc outskirts , 2012, 1203.2621.

[66]  N. Przybilla,et al.  Present-day cosmic abundances - A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models , 2012, 1203.5787.

[67]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[68]  B. Gibson,et al.  Metallicity gradients in disks - Do galaxies form inside-out? , 2012, 1201.6359.

[69]  M. Krumholz,et al.  EVOLVING GRAVITATIONALLY UNSTABLE DISKS OVER COSMIC TIME: IMPLICATIONS FOR THICK DISK FORMATION , 2011, 1112.1410.

[70]  M. Cropper,et al.  The dynamics of stars around spiral arms , 2011, 1112.0019.

[71]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[72]  V. Adibekyan,et al.  A new α-enhanced super-solar metallicity population , 2011, 1111.4936.

[73]  Judy Y. Cheng,et al.  METALLICITY GRADIENTS IN THE MILKY WAY DISK AS OBSERVED BY THE SEGUE SURVEY , 2011, 1110.5933.

[74]  M. Grenon,et al.  Analysis of old very metal rich stars in the solar neighbourhood , 2011, 1109.6304.

[75]  Bernard Muschielok,et al.  4MOST: 4-metre Multi-Object Spectroscopic Telescope , 2011, Astronomical Telescopes and Instrumentation.

[76]  L. Ho,et al.  THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G): LAIR OF MISSING BARYONS? , 2011, 1108.0037.

[77]  K. Fuhrmann Nearby stars of the Galactic disc and halo - V: Nearby stars - V , 2011 .

[78]  J. Mel'endez,et al.  A FIRST CONSTRAINT ON THE THICK DISK SCALE LENGTH: DIFFERENTIAL RADIAL ABUNDANCES IN K GIANTS AT GALACTOCENTRIC RADII 4, 8, AND 12 kpc , 2011, 1106.1914.

[79]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[80]  I. Minchev,et al.  Structure in phase space associated with spiral and bar density waves in an N-body hybrid galactic disc , 2010, 1010.5745.

[81]  I. Minchev,et al.  Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations , 2010, 1006.0484.

[82]  I. Minchev,et al.  A NEW MECHANISM FOR RADIAL MIGRATION IN GALACTIC DISKS: SPIRAL–BAR RESONANCE OVERLAP , 2009, 0911.1794.

[83]  M. Martig,et al.  THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT , 2009, 0910.3677.

[84]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[85]  J. Binney,et al.  Origin and structure of the Galactic disc(s) , 2009, 0907.1899.

[86]  M. Haywood,et al.  ON THE CORRELATION BETWEEN METALLICITY AND THE PRESENCE OF GIANT PLANETS , 2009, 0904.4445.

[87]  J. Bland-Hawthorn,et al.  Radial mixing in the outer Milky Way disc caused by an orbiting satellite , 2009, 0903.1851.

[88]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[89]  G. Stinson,et al.  Riding the Spiral Waves: Implications of Stellar Migration for the Properties of Galactic Disks , 2008, 0808.0206.

[90]  M. Haywood Radial mixing and the transition between the thick and thin Galactic discs , 2008, 0805.1822.

[91]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[92]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[93]  P. François,et al.  Abundance gradients in the Milky Way for α elements, iron peak elements, barium, lanthanum, and europium , 2006, astro-ph/0609813.

[94]  Olivier Bienayme,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): FIFTH DATA RELEASE , 2013, 1609.03210.

[95]  I. Minchev,et al.  Radial heating of a galactic disc by multiple spiral density waves , 2006 .

[96]  A. Bijaoui,et al.  Automated derivation of stellar atmospheric parameters and chemical abundances: the MATISSE algorithm , 2006, astro-ph/0604385.

[97]  I. Minchev,et al.  Radial disk heating by more than one spiral density wave , 2005, nlin/0510074.

[98]  B. Gibson,et al.  The Emergence of the Thick Disk in a Cold Dark Matter Universe , 2004, astro-ph/0405306.

[99]  C. Chiappini,et al.  Oxygen, carbon and nitrogen evolution in galaxies , 2002, astro-ph/0209627.

[100]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[101]  A. Bonanno,et al.  The age of the Sun and the relativistic corrections in the EOS , 2002 .

[102]  J. Binney,et al.  Radial mixing in galactic discs , 2002, astro-ph/0203510.

[103]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[104]  E. Corsini,et al.  Galaxy Disks and Disk Galaxies , 2000 .

[105]  R. Grijs The global structure of galactic discs , 1998 .

[106]  Charlottesville,et al.  The global structure of galactic discs , 1998, astro-ph/9804337.

[107]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[108]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[109]  P. François,et al.  Galactic chemical evolution: abundance gradients of individual elements , 1989 .

[110]  M. Grenon The chemical evolution of the galactic disc from the kinematics and metallicities of proper motion stars , 1989 .

[111]  J. Sygnet,et al.  Nonlinear coupling of galactic spiral modes , 1987 .