Evolutionary history of "early-diverging" eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia.

Diplomonads, such as Giardia, and their close relatives retortamonads have been proposed as early-branching eukaryotes that diverged before the acquisition-retention of mitochondria, and they have become key organisms in attempts to understand the evolution of eukaryotic cells. In this phylogenetic study we focus on a series of eukaryotes suggested to be relatives of diplomonads on morphological grounds, the "excavate taxa". Phylogenies of small subunit ribosomal RNA (SSU rRNA) genes, alpha-tubulin, beta-tubulin, and combined alpha- + beta-tubulin all scatter the various excavate taxa across the diversity of eukaryotes. But all phylogenies place the excavate taxon Carpediemonas as the closest relative of diplomonads (and, where data are available, retortamonads). This novel relationship is recovered across phylogenetic methods and across various taxon-deletion experiments. Statistical support is strongest under maximum-likelihood (ML) (when among-site rate variation is modeled) and when the most divergent diplomonad sequences are excluded, suggesting a true relationship rather than an artifact of long-branch attraction. When all diplomonads are excluded, our ML SSU rRNA tree actually places retortamonads and Carpediemonas away from the base of the eukaryotes. The branches separating excavate taxa are mostly not well supported (especially in analyses of SSU rRNA data). Statistical tests of the SSU rRNA data, including an "expected likelihood weights" approach, do not reject trees where excavate taxa are constrained to be a clade (with or without parabasalids and Euglenozoa). Although diplomonads and retortamonads lack any mitochondria-like organelle, Carpediemonas contains double membrane-bounded structures physically resembling hydrogenosomes. The phylogenetic position of Carpediemonas suggests that it will be valuable in interpreting the evolutionary significance of many molecular and cellular peculiarities of diplomonads.

[1]  A. Simpson,et al.  Retortamonad flagellates are closely related to diplomonads--implications for the history of mitochondrial function in eukaryote evolution. , 2002, Molecular biology and evolution.

[2]  W. Doolittle,et al.  The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution. , 2002, Molecular biology and evolution.

[3]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[4]  D. Horner,et al.  Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles , 2002, The EMBO journal.

[5]  K. Strimmer,et al.  Inferring confidence sets of possibly misspecified gene trees , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  Andrew J. Roger,et al.  A Cyanobacterial Gene in Nonphotosynthetic Protists—An Early Chloroplast Acquisition in Eukaryotes? , 2002, Current Biology.

[7]  B. Leadbeater,et al.  The flagellates : unity, diversity and evolution , 2001 .

[8]  D. Horner,et al.  Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. , 2001, Molecular biology and evolution.

[9]  J. Tachezy,et al.  Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. , 2001, Molecular biology and evolution.

[10]  A. Simpson,et al.  On Core Jakobids and Excavate Taxa: The Ultrastructure of Jakoba incarcerata , 2001, The Journal of eukaryotic microbiology.

[11]  A. Simpson,et al.  Oxymonads are closely related to the excavate taxon Trimastix. , 2001, Molecular biology and evolution.

[12]  M. Sogin,et al.  Evolutionary relationships among "jakobid" flagellates as indicated by alpha- and beta-tubulin phylogenies. , 2001, Molecular biology and evolution.

[13]  M. Sogin,et al.  Giardia lamblia expresses a proteobacterial-like DnaK homolog. , 2001, Molecular biology and evolution.

[14]  A. Rodrigo,et al.  Likelihood-based tests of topologies in phylogenetics. , 2000, Systematic biology.

[15]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[16]  P. Schimmel,et al.  Origin of mitochondria in relation to evolutionary history of eukaryotic alanyl-tRNA synthetase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Simpson,et al.  The ultrastructure of Trimastix marina Kent 1880 (Eukaryota), an excavate flagellate , 2000 .

[18]  P. J. Johnson,et al.  Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. , 2000, Current opinion in microbiology.

[19]  C. Reich,et al.  The Giardia genome project database. , 2000, FEMS microbiology letters.

[20]  L Margulis,et al.  The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  David J. Patterson,et al.  Some free-living flagellates (protista) from anoxic habitats , 2000 .

[22]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[23]  David J. Patterson,et al.  The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the “excavate hypothesis” , 1999 .

[24]  Andrew J. Roger,et al.  Reconstructing Early Events in Eukaryotic Evolution , 1999, The American Naturalist.

[25]  B. Hall,et al.  Long-branch attraction and the rDNA model of early eukaryotic evolution. , 1999, Molecular biology and evolution.

[26]  C. O'kelly,et al.  Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates. , 1999, Protist.

[27]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[28]  W. Doolittle,et al.  Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Embley,et al.  Early branching eukaryotes? , 1998, Current opinion in genetics & development.

[30]  W. Doolittle You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. , 1998, Trends in genetics : TIG.

[31]  H. Phillipe The molecular phylogeny of eukaryota: solid facts and uncertainties , 1998 .

[32]  M. Hasegawa,et al.  Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Sankoff,et al.  Genome structure and gene content in protist mitochondrial DNAs. , 1998, Nucleic acids research.

[34]  M. Sogin,et al.  A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. H. Coombs,et al.  Evolutionary relationships among protozoa. , 1998 .

[36]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[37]  M. Sogin History assignment: when was the mitochondrion founded? , 1997, Current opinion in genetics & development.

[38]  G. Brugerolle,et al.  Ultrastructure of Trimastix convexa hollande, an amitochondriate anaerobic flagellate with a previously undescribed organization , 1997 .

[39]  D. Sankoff,et al.  An ancestral mitochondrial DNA resembling a eubacterial genome in miniature , 1997, Nature.

[40]  W. Doolittle,et al.  Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Strimmer,et al.  Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies , 1996 .

[42]  D. S. Reiner,et al.  Cell biology of the primitive eukaryote Giardia lamblia. , 1996, Annual review of microbiology.

[43]  J. Adachi,et al.  Phylogenetic place of mitochondrion-lacking protozoan, Giardia lamblia, inferred from amino acid sequences of elongation factor 2. , 1995, Molecular biology and evolution.

[44]  M. Hasegawa,et al.  Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia. , 1994, Molecular biology and evolution.

[45]  C. O'kelly The Jakobid Flagellates: Structural Features of Jakoba, Reclinomonas and Histiona and Implications for the Early Diversification of Eukaryotes , 1993 .

[46]  M. Siddall,et al.  Phylogenetic analysis of the Diplomonadida (Wenyon, 1926) Brugerolle, 1975: evidence for heterochrony in protozoa and against Giardia lamblia as a "missing link". , 1992, The Journal of protozoology.

[47]  Steve Steiner,et al.  Missing link , 1989 .

[48]  M. Sogin,et al.  Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. , 1989, Science.

[49]  M. Sogin,et al.  The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. , 1988, Gene.

[50]  T. Cavalier-smith A 6-Klngdom Classification And A Unified Phylogeny , 1983 .