First Principles Study on Structural and Electronic Properties of LiFeSO4OH Cathode Material for Lithium Ion Batteries

Structural and electronic properties of a new fluorine-free cathode material of polyanionichydroxysulfates, LiFeSO4OH with caminite structure are studied using first principles density functional theory. From the calculated result, it reveals that antiferromagnetic configuration is more stable compared to ferromagnetic and non-magnetic configuration. Meanwhile, the density of state calculation divulges that this material exhibited large d-d type of band gap and would behave as a Mott-Hubbard insulator. Thus, this behaviour can lead to poor electronic conductivity.

[1]  Wade Babcock,et al.  Computational materials science , 2004 .

[2]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[3]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[4]  F. Du,et al.  First-Principles Calculations on the LiMSO4F/MSO4F (M = Fe, Co, and Ni) Systems , 2011 .

[5]  M. Yahya,et al.  First Principle Study of Dynamical Properties of a New Perovskite Material Based on GeTiO3 , 2012 .

[6]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[7]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[8]  Robert Dominko,et al.  Dependence of Li2FeSiO4 electrochemistry on structure. , 2011, Journal of the American Chemical Society.

[9]  A. Yamada,et al.  New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. , 2010, Journal of the American Chemical Society.

[10]  Oskar Hasdinor Hassan,et al.  Structural, Electronic, and Lattice Dynamics of PbTiO3, SnTiO3, and SnZrO3: A Comparative First-Principles Study , 2013 .

[11]  William T. Faricy A.A.R. , 1951 .

[12]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[13]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[14]  Jean-Marie Tarascon,et al.  Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure , 2011 .

[15]  H. Coules,et al.  Advanced Materials Research , 2014 .

[16]  R. Huggins Solid State Ionics , 1989 .

[17]  L. Nazar,et al.  New composite materials for lithium-ion batteries , 2012 .

[18]  John B. Goodenough,et al.  LixCoO2 (0, 1981 .

[19]  C. N. R. Rao,et al.  Chemistry of materials , 2009 .

[20]  R. Ahuja,et al.  Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations , 2010 .

[21]  V. Manivannan,et al.  Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution , 1998 .

[22]  A. Müller Journal of Physics Condensed Matter , 2008 .

[23]  Effect of Pressure on Structural, Electronic and Elastic Properties of Cubic (Pm3m) SnTiO3 Using First Principle Calculation , 2012 .

[24]  S. Hong,et al.  A first-principles study of magnetism of lithium fluorosulphate LiFeSO4F , 2013 .

[25]  S. Yamada,et al.  Synthesis and properties of LiNiO2 as cathode material for secondary batteries , 1995 .

[26]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[27]  Gustaaf Van Tendeloo,et al.  Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates: LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[28]  J. Tarascon,et al.  Single-Step Synthesis of FeSO4F1–yOHy (0 ≤ y ≤ 1) Positive Electrodes for Li-Based Batteries , 2012 .

[29]  M. Yoshio,et al.  New lithiummanganese composite oxide for the cathode of rechargeable lithium batteries , 1991 .