Seasonality extraction by function fitting to time-series of satellite sensor data

A new method for extracting seasonality information from time-series of satellite sensor data is presented. The method is based on nonlinear least squares fits of asymmetric Gaussian model functions to the time-series. The smooth model functions are then used for defining key seasonality parameters, such as the number of growing seasons, the beginning and end of the seasons, and the rates of growth and decline. The method is implemented in a computer program TIMESAT and tested on Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation index (NDVI) data over Africa. Ancillary cloud data [clouds from AVHRR (CLAVR)] are used as estimates of the uncertainty levels of the data values. Being general in nature, the proposed method can be applied also to new types of satellite-derived time-series data.

[1]  Jesslyn F. Brown,et al.  Measuring phenological variability from satellite imagery , 1994 .

[2]  James J. Simpson,et al.  A procedure for the detection and removal of cloud shadow from AVHRR data over land , 1998, IEEE Trans. Geosci. Remote. Sens..

[3]  C. J. Tucker,et al.  Spectral assessment of soybean leaf area and leaf biomass , 1980 .

[4]  John E. Dennis,et al.  Algorithm 573: NL2SOL—An Adaptive Nonlinear Least-Squares Algorithm [E4] , 1981, TOMS.

[5]  J. Malingreau Global vegetation dynamics - Satellite observations over Asia , 1986 .

[6]  John F. Griffiths,et al.  Climates of Africa , 1972 .

[7]  Garik Gutman,et al.  Vegetation indices from AVHRR: An update and future prospects , 1991 .

[8]  Aaron Moody,et al.  Land-Surface Phenologies from AVHRR Using the Discrete Fourier Transform , 2001 .

[9]  H. Mooney,et al.  Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere , 1997, Science.

[10]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[11]  William Salas,et al.  Fourier analysis of multi-temporal AVHRR data applied to a land cover classification , 1994 .

[12]  Wout Verhoef,et al.  Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images , 1993 .

[13]  L. Stowe,et al.  AVHRR Pixel Level Clear-Sky Classification Using Dynamic Thresholds (CLAVR-3) , 2001 .

[14]  C. Justice,et al.  The generation of global fields of terrestrial biophysical parameters from the NDVI , 1994 .

[15]  C. Justice,et al.  Analysis of the phenology of global vegetation using meteorological satellite data , 1985 .

[16]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[17]  W. Verhoef,et al.  Reconstructing cloudfree NDVI composites using Fourier analysis of time series , 2000 .

[18]  C. Long,et al.  Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data , 1991 .

[19]  S. Kalluri,et al.  The Pathfinder AVHRR land data set: An improved coarse resolution data set for terrestrial monitoring , 1994 .

[20]  A. Dijk,et al.  Smoothing vegetation index profiles: an alternative method for reducing radiometric disturbance in NOAA/AVHRR data , 1987 .

[21]  Yoram J. Kaufman,et al.  Atmospheric correction against algorithm for NOAA-AVHRR products: theory and application , 1992, IEEE Trans. Geosci. Remote. Sens..

[22]  Ramakrishna R. Nemani,et al.  Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates , 1988 .

[23]  Gérard Dedieu,et al.  Methodology for the estimation of terrestrial net primary production from remotely sensed data , 1994 .

[24]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[25]  D. Lloyd,et al.  A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery , 1990 .

[26]  J. Cihlar Identification of contaminated pixels in AVHRR composite images for studies of land biosphere , 1996 .

[27]  Christopher O. Justice,et al.  Monitoring the grasslands of the Sahel 1984-1985 , 1986 .

[28]  L. Eklundh,et al.  Fourier series for analysis of temporal sequences of satellite sensor imagery , 1994 .

[29]  Jonathan Seaquist,et al.  Improving the estimation of noise from NOAA AVHRR NDVI for Africa using geostatistics , 2001 .

[30]  Ake Rosenqvist,et al.  Remote Sensing and the Kyoto Protocol: A Workshop Summary , 2000 .

[31]  A. Belward,et al.  The Best Index Slope Extraction ( BISE): A method for reducing noise in NDVI time-series , 1992 .

[32]  J. O. Rawlings,et al.  Applied Regression Analysis , 1998 .

[33]  S. Goward,et al.  Evaluating North American net primary productivity with satellite observations , 1987 .

[34]  John R. G. Townshend,et al.  Global data sets for land applications from the Advanced Very High Resolution Radiometer: an introduction , 1994 .

[35]  Alexander Ignatov,et al.  The relative merit of cloud/clear identification in the NOAA/NASA Pathfinder AVHRR Land 10-day composites , 1996 .

[36]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[37]  C. Justice,et al.  Analysis of the dynamics of African vegetation using the normalized difference vegetation index , 1986 .

[38]  Lars Eklundh,et al.  Noise estimation in NOAA AVHRR maximum-value composite NDVI images , 1995 .

[39]  S. Goward,et al.  Evaluation of the NOAA/NASA Pathfinder AVHRR Land Data Set for global primary production , 1995 .