Chaos in Fast-Slow Systems

Similar to Chapter 13, the current chapter uses the theory previously discussed in parts of this book to gain substantial insight into nonlinear dynamics.

[1]  Teresa Ree Chay,et al.  BURSTING, SPIKING, CHAOS, FRACTALS, AND UNIVERSALITY IN BIOLOGICAL RHYTHMS , 1995 .

[2]  H. Kantz,et al.  Fast chaos versus white noise: entropy analysis and a Fokker–Planck model for the slow dynamics , 2004 .

[3]  Leon O. Chua,et al.  Van der Pol and chaos , 1986 .

[4]  Noé Barrera Gallegos,et al.  Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs , 2013 .

[5]  G. Haller,et al.  Multi-Dimensional Homoclinic Jumping and the Discretized NLS Equation , 1998 .

[6]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[7]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[8]  M. L. Cartwright I. Van der Pol’s Equation for Relaxation Oscillations , 1953 .

[9]  Bo Deng,et al.  Food chain chaos due to Shilnikov's orbit. , 2002, Chaos.

[10]  Ian Melbourne,et al.  The Lorenz Attractor is Mixing , 2005 .

[11]  M. Levi Periodically forced relaxation oscillations , 1980 .

[12]  J. Milnor On the concept of attractor , 1985 .

[13]  Life on the Edge of Chaos , 2004 .

[14]  Teresa Ree Chay,et al.  Chaos in a three-variable model of an excitable cell , 1985 .

[15]  D. Ruelle,et al.  Recurrence Plots of Dynamical Systems , 1987 .

[16]  Johan Grasman,et al.  Critical dynamics of the Bonhoeffer–van der Pol equation and its chaotic response to periodic stimulation , 1993 .

[17]  Lai-Sang Young,et al.  Strange Attractors with One Direction of Instability , 2001 .

[18]  W. Tucker The Lorenz attractor exists , 1999 .

[19]  J. Grasman,et al.  Relaxation Oscillations Governed by a Van der Pol Equation with Periodic Forcing Term , 1976 .

[20]  Y. Ilyashenko,et al.  MINIMAL AND STRANGE ATTRACTORS , 1996 .

[21]  P. Holmes Bifurcation sequences in horseshoe maps: infinitely many routes to chaos , 1984 .

[22]  R. Robinson,et al.  An Introduction to Dynamical Systems: Continuous and Discrete , 2004 .

[23]  L. Young,et al.  Horseshoes of periodically kicked van der Pol oscillators. , 2012, Chaos.

[24]  Andrey Shilnikov,et al.  Origin of Chaos in a Two-Dimensional Map Modeling Spiking-bursting Neural Activity , 2003, Int. J. Bifurc. Chaos.

[25]  Roberto Barrio,et al.  Bounds for the chaotic region in the Lorenz model , 2009 .

[26]  H. Kantz,et al.  Stochastic modelling: replacing fast degrees of freedom by noise. , 2001 .

[27]  J. E. Littlewood,et al.  On non-linear differential equations of the second order: III. The equation $$\ddot y - k(1 - y^2 )\dot y + y = b \mu k cos (\mu t + \alpha )$$ for largek, and its generalizationsfor largek, and its generalizations , 1957 .

[28]  Christophe Letellier,et al.  Development of the Nonlinear Dynamical Systems Theory from Radio Engineering to Electronics , 2009, Int. J. Bifurc. Chaos.

[29]  John Guckenheimer,et al.  Dynamics of the Van der Pol equation , 1980 .

[30]  Richard A. Holmgren A First Course in Discrete Dynamical Systems , 1994 .

[31]  Andrey Shilnikov,et al.  Coexistence of Tonic Spiking Oscillations in a Leech Neuron Model , 2005, Journal of Computational Neuroscience.

[32]  Xue-Rong Shi,et al.  Chaos bursting synchronization of mismatched Hindmarsh–Rose systems via a single adaptive feedback controller , 2012 .

[33]  J. E. Littlewood,et al.  On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .

[34]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[35]  S. Smale Differentiable dynamical systems , 1967 .

[36]  Chaotic behaviour in a singularly perturbed system , 2006 .

[37]  Lai-Sang Young,et al.  What Are SRB Measures, and Which Dynamical Systems Have Them? , 2002 .

[38]  David S. Broomhead,et al.  The origins of chaos in a modified Van der Pol oscillator , 1991 .

[39]  Makoto Itoh,et al.  Chaos and canards in the van der Pol equation with periodic forcing , 1994 .

[40]  Krešimir Josić,et al.  INVARIANT MANIFOLDS AND SYNCHRONIZATION OF COUPLED DYNAMICAL SYSTEMS , 1998 .

[41]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[42]  Internal degrees of freedom and transport of benzene on graphite. , 2011, 1107.2541.

[43]  M. Levi A new randomness-generating mechanism in forced relaxation oscillations , 1998 .

[44]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[45]  Derek John Scott Robinson,et al.  An Introduction to Abstract Algebra , 2003 .

[46]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[47]  B. Deng CONSTRUCTING LORENZ TYPE ATTRACTORS THROUGH SINGULAR PERTURBATIONS , 1995 .

[48]  A. Fasolino,et al.  Relating chaos to deterministic diffusion of a molecule adsorbed on a surface. , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  M. L. Cartwright On non-linear differential equations of the second order , 1949 .

[50]  K. Kaneko,et al.  Bifurcation cascade as chaotic itinerancy with multiple time scales. , 2003, Chaos.

[51]  Georg A. Gottwald,et al.  Homogenization for deterministic maps and multiplicative noise , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  M. Kot,et al.  Nearly one dimensional dynamics in an epidemic. , 1985, Journal of theoretical biology.

[53]  K. Aihara,et al.  12. Chaotic oscillations and bifurcations in squid giant axons , 1986 .

[54]  On-Off Intermittency in Relaxation Systems , 2003 .

[55]  Shinji Doi,et al.  Chaotic spiking in the Hodgkin-Huxley nerve model with slow inactivation of the sodium current. , 2004, Journal of integrative neuroscience.

[56]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[57]  Tasso J. Kaper,et al.  Geometric Desingularization of a Cusp Singularity in Slow–Fast Systems with Applications to Zeeman’s Examples , 2013 .

[58]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[59]  M. Levi Qualitative Analysis of the Periodically Forced Relaxation Oscillations , 1981 .

[60]  Parlitz,et al.  Period-doubling cascades and devil's staircases of the driven van der Pol oscillator. , 1987, Physical review. A, General physics.

[61]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[62]  Krešimir Josić,et al.  Synchronization of chaotic systems and invariant manifolds , 2000 .

[63]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: Low-dimensional phenomena , 1995 .

[64]  P. McClintock,et al.  Nonlinear systems with fast and slow motions:changes in the probability distribution for fast motions under the influence of slower ones , 2013 .

[65]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[66]  Bo Deng CONSTRUCTING HOMOCLINIC ORBITS AND CHAOTIC ATTRACTORS , 1994 .

[67]  Philip Holmes,et al.  Knotted periodic orbits in suspensions of Smale's horseshoe: Torus knots and bifurcation sequences , 1985 .

[68]  Stephen Wiggins,et al.  Homoclinic orbits and chaos in discretized perturbed NLS systems: Part II. Symbolic dynamics , 1997 .

[69]  J. E. Littlewood,et al.  On Non-Linear Differential Equations of the Second Order: II. The Equation .. y + kf(y, . y + g(y, k) = p(t) = p 1 (t) + kp 2 (t); k > 0, f(y) > 1 , 1947 .

[70]  Slow stochastic switching by collective chaos of fast elements. , 2013, Physical review letters.

[71]  G. Pavliotis,et al.  New stochastic mode reduction strategy for dissipative systems. , 2013, Physical review letters.

[72]  Stefano Euzzor,et al.  Experimental study of firing death in a network of chaotic FitzHugh-Nagumo neurons. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[74]  J. E. Littlewood On non-linear differential equations of the second order: IV. The general equation $$\ddot y + kf\left( y \right)\dot y + g\left( y \right) = bkp\left( \varphi \right)$$ , φ=t+α, φ=t+α , 1957 .

[75]  Alejandro J. Rodríguez-Luis,et al.  AN ANALYTICAL AND NUMERICAL STUDY OF A MODIFIED VAN DER POL OSCILLATOR , 2002 .

[76]  K. Kaneko,et al.  How fast elements can affect slow dynamics , 2001, nlin/0108038.

[77]  Johan Grasman,et al.  The Lyapunov exponents of the Van der Pol oscillator , 2005 .

[78]  John Guckenheimer,et al.  Symbolic dynamics and relaxation oscillations , 1980 .

[79]  Shinji Doi,et al.  Generation of Very Slow Neuronal Rhythms and Chaos Near the Hopf Bifurcation in Single Neuron Models , 2005, Journal of Computational Neuroscience.

[80]  David Terman,et al.  Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .

[81]  Benjamin Lindner,et al.  Spontaneous voltage oscillations and response dynamics of a Hodgkin-Huxley type model of sensory hair cells , 2011, Journal of mathematical neuroscience.

[82]  John Guckenheimer,et al.  Global bifurcations of periodic orbits in the forced Van der Pol equation , 2001 .

[83]  John Guckenheimer,et al.  The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..

[84]  L. Glass,et al.  Understanding Nonlinear Dynamics , 1995 .

[85]  Jos B. T. M. Roerdink,et al.  Stochastic and chaotic relaxation oscillations , 1987 .

[86]  Teresa Ree Chay,et al.  Generation of periodic and chaotic bursting in an excitable cell model , 1994, Biological Cybernetics.

[87]  R. Abraham,et al.  A chaotic blue sky catastrophe in forced relaxation oscillations , 1986 .

[88]  Christiansen,et al.  Routes to chaos and complete phase locking in modulated relaxation oscillators. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[89]  J. Byrne,et al.  Routes to chaos in a model of a bursting neuron. , 1990, Biophysical journal.

[90]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .

[91]  H. Kantz,et al.  Vertical chaos and horizontal diffusion in the bouncing-ball billiard. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Rafail V. Abramov,et al.  Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling , 2011, 1105.3164.

[93]  Yasumasa Nishiura,et al.  Coexistence of Infinitely Many Stable Solutions to Reaction Diffusion Systems in the Singular Limit , 1994 .

[94]  Bo Deng,et al.  Food chain chaos due to junction-fold point. , 2001, Chaos.

[95]  Roberto Benzi,et al.  Characterisation of intermittency in chaotic systems , 1985 .

[96]  Some foundational issues in multiple scale theory , 1994 .

[97]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[98]  Shanmuganathan Rajasekar,et al.  Period-doubling bifurcations, chaos, phase-locking and devil's staircase in a Bonhoeffer–van der Pol oscillator , 1988 .

[99]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[100]  Georgi S Medvedev,et al.  Transition to bursting via deterministic chaos. , 2006, Physical review letters.

[101]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[102]  Garrett Stuck,et al.  Introduction to Dynamical Systems , 2003 .

[103]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[104]  A. M. Stuart,et al.  A note on diffusion limits of chaotic skew-product flows , 2011, 1101.3087.

[105]  Ray Brown Horseshoes in the measure-preserving Hénon map , 1995, Ergodic Theory and Dynamical Systems.

[106]  Dmitry Turaev,et al.  Communications in Mathematical Physics Unbounded Energy Growth in Hamiltonian Systems with a Slowly Varying Parameter , 2008 .

[107]  John Guckenheimer,et al.  The Birth of Chaos , 2013 .

[108]  M. Rabinovich,et al.  Stochastic oscillations in dissipative systems , 1981 .

[109]  D. McLaughlin,et al.  Homoclinic orbits and chaos in discretized perturbed NLS systems: Part I. Homoclinic orbits , 1997 .

[110]  Bruno Rossetto Chua's Circuit as a Slow-Fast Autonomous Dynamical System , 1993, J. Circuits Syst. Comput..

[111]  N. K. Rozov,et al.  On the definition of 'chaos' , 2009 .

[112]  R. Kapral Analysis of flow hysteresis by a one-dimensional map , 1982 .

[113]  J. M. Robbins,et al.  Chaotic classical and half-classical adiabatic reactions: geometric magnetism and deterministic friction , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[114]  Symbolic dynamics , 2008, Scholarpedia.

[115]  John Guckenheimer,et al.  Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..

[116]  Philip Holmes,et al.  Knotted periodic orbits in suspensions of Smale's horseshoe: period multiplying and cabled knots , 1986 .

[117]  Hayato Chiba,et al.  Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators. , 2009, Chaos.

[118]  Bo Deng,et al.  Food chain chaos with canard explosion. , 2004, Chaos.

[119]  Peter Schuster,et al.  Bistability of Harmonically Forced Relaxation oscillations , 2002, Int. J. Bifurc. Chaos.

[120]  Bo Deng,et al.  Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-cells , 1999, Journal of mathematical biology.

[121]  L. Young,et al.  From Invariant Curves to Strange Attractors , 2002 .

[122]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[123]  Gail A. Carpenter,et al.  Bursting Phenomena in Excitable Membranes , 1979 .

[124]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[125]  P. Grassberger,et al.  On the symbolic dynamics of the Henon map , 1989 .

[126]  John Guckenheimer,et al.  Chaotic attractors of relaxation oscillators , 2006 .

[127]  Kazuyuki Aihara,et al.  Sudden change from chaos to oscillation death in the Bonhoeffer-van der Pol oscillator under weak periodic perturbation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[128]  S. Smale,et al.  Finding a horseshoe on the beaches of Rio , 1998 .

[129]  Zbigniew Nitecki,et al.  Global Theory of Dynamical Systems , 1980 .

[130]  A. Kolesov,et al.  Chaos of the broken torus type in three-dimensional relaxation systems , 1996 .

[131]  R. Haiduc Horseshoes in the forced van der Pol system , 2008 .

[132]  Leon O. Chua,et al.  Slow Manifolds of some Chaotic Systems with Applications to Laser Systems , 2000, Int. J. Bifurc. Chaos.

[133]  Wolfram Just,et al.  Elimination of Fast Chaotic Degrees of Freedom: On the Accuracy of the Born Approximation , 2003 .

[134]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[135]  Julio M. Ottino,et al.  Laminar mixing and chaotic mixing in several cavity flows , 1986, Journal of Fluid Mechanics.

[136]  Hendrik Broer,et al.  Dynamical Systems and Chaos , 2010 .

[137]  Philip Holmes,et al.  Averaging and chaotic motions in forced oscillations , 1980 .

[138]  S. Coombes,et al.  Period-adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.