BCIのための様々な運動イメージの単一試行複数状態識別;BCIのための様々な運動イメージの単一試行複数状態識別;A Single-trial Multi-class Classification of Various Motor Imagery Tasks for EEG-based Brain-computer Interface Communication

[1]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[2]  Bin He,et al.  Relationship between speed and EEG activity during imagined and executed hand movements , 2010, Journal of neural engineering.

[3]  M. Stokes,et al.  Cognitive tasks for driving a brain-computer interfacing system: a pilot study , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[4]  Junichi Ushiba,et al.  EEG-based classification of imaginary left and right foot movements using beta rebound , 2013, Clinical Neurophysiology.

[5]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[6]  Maureen Clerc,et al.  Combining ERD and ERS features to create a system-paced BCI , 2013, Journal of Neuroscience Methods.

[7]  T. Wüstenberg,et al.  Asymmetry of cortical activation during maximum and convenient tapping speed , 2004, Neuroscience Letters.

[8]  G. Pfurtscheller,et al.  EEG-based discrimination between imagination of right and left hand movement. , 1997, Electroencephalography and clinical neurophysiology.

[9]  Clemens Brunner,et al.  Better than random? A closer look on BCI results , 2008 .

[10]  Hans Forssberg,et al.  Human brain activity in the control of fine static precision grip forces: an fMRI study , 2001, The European journal of neuroscience.

[11]  C. Neuper,et al.  The effect of distinct mental strategies on classification performance for brain-computer interfaces. , 2012, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[12]  Chang-Hwan Im,et al.  Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard , 2012, Journal of Neuroscience Methods.

[13]  M G Bleichner,et al.  Functional MRI-based identification of brain areas involved in motor imagery for implantable brain–computer interfaces , 2011, Journal of neural engineering.

[14]  Clemens Brunner,et al.  Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks , 2006, NeuroImage.

[15]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[16]  Daniel S. Margulies,et al.  Effects of Finger Tapping Frequency on Regional Homogeneity of Sensorimotor Cortex , 2013, PloS one.

[17]  G. Pfurtscheller,et al.  Motor imagery activates primary sensorimotor area in humans , 1997, Neuroscience Letters.

[18]  Po-Lei Lee,et al.  Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing , 2011, Journal of Neuroscience Methods.

[19]  Keng Peng Tee,et al.  EEG-Based Classification of Fast and Slow Hand Movements Using Wavelet-CSP Algorithm , 2013, IEEE Transactions on Biomedical Engineering.

[20]  Chang-Hwan Im,et al.  Classification of selective attention to auditory stimuli: Toward vision-free brain–computer interfacing , 2011, Journal of Neuroscience Methods.

[21]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[22]  B. Rosen,et al.  Motor cortex activation is related to force of squeezing , 2002, Human brain mapping.