The Maximum Clique Problem in Multiple Interval Graphs

Multiple interval graphs are variants of interval graphs where instead of a single interval, each vertex is assigned a set of intervals on the real line. We study the complexity of the MAXIMUM CLIQUE problem in several classes of multiple interval graphs. The MAXIMUM CLIQUE problem, or the problem of finding the size of the maximum clique, is known to be NP-complete for t-interval graphs when t≥3 and polynomial-time solvable when t=1. The problem is also known to be NP-complete in t-track graphs when t≥4 and polynomial-time solvable when t≤2. We show that MAXIMUM CLIQUE is already NP-complete for unit 2-interval graphs and unit 3-track graphs. Further, we show that the problem is APX-complete for 2-interval graphs, 3-track graphs, unit 3-interval graphs and unit 4-track graphs. We also introduce two new classes of graphs called t-circular interval graphs and t-circular track graphs and study the complexity of the MAXIMUM CLIQUE problem in them. On the positive side, we present a polynomial time t-approximation algorithm for MAXIMUM WEIGHTED CLIQUE on t-interval graphs, improving earlier work with approximation ratio 4t.

[1]  Moshe Lewenstein,et al.  Dotted interval graphs and high throughput genotyping , 2005, SODA '05.

[2]  Piotr Berman,et al.  On the Approximation Properties of Independent Set Problem in Degree 3 Graphs , 1999, WADS.

[3]  Minghui Jiang,et al.  On the parameterized complexity of some optimization problems related to multiple-interval graphs , 2010, Theor. Comput. Sci..

[4]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[5]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[6]  Wen-Lian Hsu,et al.  Maximum Weight Clique Algorithms for Circular-Arc Graphs and Circle Graphs , 1985, SIAM J. Comput..

[7]  Martin Charles Golumbic,et al.  Vertex Intersection Graphs of Paths on a Grid , 2012, J. Graph Algorithms Appl..

[8]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[9]  Minghui Jiang Clique in 3-track interval graphs is APX-hard , 2012, ArXiv.

[10]  William T. Trotter,et al.  The interval number of a complete multipartite graph , 1984, Discret. Appl. Math..

[11]  Felix G. König,et al.  Sorting with Objectives , 2010 .

[12]  Gad M. Landau,et al.  Approximating the 2-interval pattern problem , 2005, Theor. Comput. Sci..

[13]  Yong Zhang,et al.  Parameterized complexity in multiple-interval graphs: Domination, partition, separation, irredundancy , 2012, Theor. Comput. Sci..

[14]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[15]  Fanica Gavril,et al.  Maximum weight independent sets and cliques in intersection graphs of filaments , 2000, Inf. Process. Lett..

[16]  Douglas B. West,et al.  The interval number of a planar graph: Three intervals suffice , 1983, J. Comb. Theory, Ser. B.

[17]  Ewald Speckenmeyer,et al.  Ramsey numbers and an approximation algorithm for the vertex cover problem , 1985, Acta Informatica.

[18]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[19]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[20]  Edward R. Scheinerman,et al.  The maximum interval number of graphs with given genus , 1987, J. Graph Theory.

[21]  Fanica Gavril,et al.  Algorithms for a maximum clique and a maximum independent set of a circle graph , 1973, Networks.

[22]  Miroslav Chlebi´k,et al.  The Complexity of Combinatorial Optimization Problems on $d$-Dimensional Boxes , 2007 .

[23]  Frank Kammer,et al.  Approximation Algorithms for Intersection Graphs , 2012, Algorithmica.

[24]  M. Middendorf,et al.  The max clique problem in classes of string-graphs , 1992, Discret. Math..

[25]  Miroslav Chlebík,et al.  The Complexity of Combinatorial Optimization Problems on d-Dimensional Boxes , 2007, SIAM J. Discret. Math..

[26]  Jean Cardinal,et al.  The Clique Problem in Ray Intersection Graphs , 2013, Discret. Comput. Geom..

[27]  Douglas B. West,et al.  Extremal Values of the Interval Number of a Graph , 1980, SIAM J. Matrix Anal. Appl..

[28]  Thomas Andreae On the Interval Number of a Triangulated Graph , 1987, J. Graph Theory.

[29]  Frank Harary,et al.  On double and multiple interval graphs , 1979, J. Graph Theory.

[30]  Moshe Lewenstein,et al.  Optimization problems in multiple-interval graphs , 2007, SODA '07.

[31]  David B. Shmoys,et al.  Recognizing graphs with fixed interval number is NP-complete , 1984, Discret. Appl. Math..

[32]  Dorit S. Hochbaum,et al.  Cyclical scheduling and multi-shift scheduling: Complexity and approximation algorithms , 2006, Discret. Optim..

[33]  Christoph Maas A lower bound for the interval number of a graph , 1984 .

[34]  Tomás Kaiser Transversals of d-Intervals , 1997, Discret. Comput. Geom..