The Maximum Clique Problem in Multiple Interval Graphs
暂无分享,去创建一个
[1] Moshe Lewenstein,et al. Dotted interval graphs and high throughput genotyping , 2005, SODA '05.
[2] Piotr Berman,et al. On the Approximation Properties of Independent Set Problem in Degree 3 Graphs , 1999, WADS.
[3] Minghui Jiang,et al. On the parameterized complexity of some optimization problems related to multiple-interval graphs , 2010, Theor. Comput. Sci..
[4] Michael R. Fellows,et al. On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..
[5] Reuven Bar-Yehuda,et al. Scheduling split intervals , 2002, SODA '02.
[6] Wen-Lian Hsu,et al. Maximum Weight Clique Algorithms for Circular-Arc Graphs and Circle Graphs , 1985, SIAM J. Comput..
[7] Martin Charles Golumbic,et al. Vertex Intersection Graphs of Paths on a Grid , 2012, J. Graph Algorithms Appl..
[8] David S. Johnson,et al. The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.
[9] Minghui Jiang. Clique in 3-track interval graphs is APX-hard , 2012, ArXiv.
[10] William T. Trotter,et al. The interval number of a complete multipartite graph , 1984, Discret. Appl. Math..
[11] Felix G. König,et al. Sorting with Objectives , 2010 .
[12] Gad M. Landau,et al. Approximating the 2-interval pattern problem , 2005, Theor. Comput. Sci..
[13] Yong Zhang,et al. Parameterized complexity in multiple-interval graphs: Domination, partition, separation, irredundancy , 2012, Theor. Comput. Sci..
[14] David Zuckerman,et al. Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .
[15] Fanica Gavril,et al. Maximum weight independent sets and cliques in intersection graphs of filaments , 2000, Inf. Process. Lett..
[16] Douglas B. West,et al. The interval number of a planar graph: Three intervals suffice , 1983, J. Comb. Theory, Ser. B.
[17] Ewald Speckenmeyer,et al. Ramsey numbers and an approximation algorithm for the vertex cover problem , 1985, Acta Informatica.
[18] Leslie G. Valiant,et al. Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.
[19] Mihalis Yannakakis,et al. Optimization, approximation, and complexity classes , 1991, STOC '88.
[20] Edward R. Scheinerman,et al. The maximum interval number of graphs with given genus , 1987, J. Graph Theory.
[21] Fanica Gavril,et al. Algorithms for a maximum clique and a maximum independent set of a circle graph , 1973, Networks.
[22] Miroslav Chlebi´k,et al. The Complexity of Combinatorial Optimization Problems on $d$-Dimensional Boxes , 2007 .
[23] Frank Kammer,et al. Approximation Algorithms for Intersection Graphs , 2012, Algorithmica.
[24] M. Middendorf,et al. The max clique problem in classes of string-graphs , 1992, Discret. Math..
[25] Miroslav Chlebík,et al. The Complexity of Combinatorial Optimization Problems on d-Dimensional Boxes , 2007, SIAM J. Discret. Math..
[26] Jean Cardinal,et al. The Clique Problem in Ray Intersection Graphs , 2013, Discret. Comput. Geom..
[27] Douglas B. West,et al. Extremal Values of the Interval Number of a Graph , 1980, SIAM J. Matrix Anal. Appl..
[28] Thomas Andreae. On the Interval Number of a Triangulated Graph , 1987, J. Graph Theory.
[29] Frank Harary,et al. On double and multiple interval graphs , 1979, J. Graph Theory.
[30] Moshe Lewenstein,et al. Optimization problems in multiple-interval graphs , 2007, SODA '07.
[31] David B. Shmoys,et al. Recognizing graphs with fixed interval number is NP-complete , 1984, Discret. Appl. Math..
[32] Dorit S. Hochbaum,et al. Cyclical scheduling and multi-shift scheduling: Complexity and approximation algorithms , 2006, Discret. Optim..
[33] Christoph Maas. A lower bound for the interval number of a graph , 1984 .
[34] Tomás Kaiser. Transversals of d-Intervals , 1997, Discret. Comput. Geom..