Robustness of system-filter separation for the feedback control of a quantum harmonic oscillator undergoing continuous position measurement

We consider the effects of experimental imperfections on the problem of estimation-based feedback control of a trapped particle undergoing continuous position measurement. These limitations violate the assumption that the estimator (i.e., filter) accurately models the underlying system, thus requiring a separate analysis of the system and filter dynamics. We quantify the parameter regimes for stable cooling and show that the control scheme is robust to detector inefficiency, time delay, technical noise, and miscalibrated parameters. We apply these results to the specific context of a weakly-interacting Bose-Einstein condensate (BEC). Given that this system has previously been shown to be less stable than a feedback-cooled BEC with strong interatomic interactions, this result shows that reasonable experimental imperfections do not limit the feasibility of cooling a BEC by continuous measurement and feedback.

[1]  H M Wiseman,et al.  Reducing the linewidth of an atom laser by feedback. , 2001, Physical review letters.

[2]  Matthew R. James,et al.  Effects of measurement backaction in the stabilization of a bose-einstein condensate through feedback , 2007 .

[3]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[4]  A. Carvalho,et al.  Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging , 2010, 1009.0587.

[5]  Knight,et al.  Evolution of quantum superpositions in open environments: Quantum trajectories, jumps, and localization in phase space. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[6]  Guofeng Zhang,et al.  LQG/H∞ control of linear quantum stochastic systems , 2015, 2015 34th Chinese Control Conference (CCC).

[7]  J. J. Hope,et al.  Continuous measurement feedback control of a Bose-Einstein condensate using phase-contrast imaging , 2009 .

[8]  Joseph J. Hope,et al.  Why momentum width matters for atom interferometry with Bragg pulses , 2011, 1110.2901.

[9]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[10]  Neil P. Oxtoby,et al.  Quantum trajectories for the realistic measurement of a solid-state charge qubit , 2005 .

[11]  Mark A. Kasevich,et al.  Coherence with Atoms , 2002, Science.

[12]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[13]  Francesco Petruccione,et al.  Unsharp continuous measurement of a Bose-Einstein condensate: Full quantum state estimation and the transition to classicality , 2012, 1206.6702.

[14]  Mode selectivity and stability of continuously pumped atom lasers , 2003 .

[15]  John K. Stockton,et al.  REVIEW ARTICLE: Modelling and feedback control design for quantum state preparation , 2005 .

[16]  Naoki Yamamoto,et al.  Quantum Risk-Sensitive Estimation and Robustness , 2007, IEEE Transactions on Automatic Control.

[17]  Andrew C Doherty,et al.  The quantum trajectory approach to quantum feedback control of an oscillator revisited , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Effects of Measurement back-action in the stabilization of a Bose-Einstein condensate through feedback , 2007, 0704.2097.

[19]  P. Altin,et al.  Cold-atom gravimetry with a Bose-Einstein condensate , 2010, 1011.5804.

[20]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[21]  D. Stamper-Kurn,et al.  Optical detection of the quantization of collective atomic motion. , 2011, Physical review letters.

[22]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[23]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[24]  H M Wiseman,et al.  Capture and release of a conditional state of a cavity QED system by quantum feedback. , 2002, Physical review letters.

[25]  Joseph J. Hope,et al.  XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations , 2012, Comput. Phys. Commun..

[26]  Jason F Ralph,et al.  Quantum filtering one bit at a time. , 2011, Physical review letters.

[27]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[28]  Hideo Mabuchi,et al.  Quantum feedback control of atomic motion in an optical cavity. , 2003, Physical Review Letters.

[29]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[30]  Franco Nori,et al.  Confidence and backaction in the quantum filter equation , 2012 .

[31]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[32]  van der Arjan Schaft,et al.  2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC) , 2011, CDC 2011.

[33]  M. R. James,et al.  Risk-sensitive optimal control of quantum systems , 2004 .

[34]  Kurt Jacobs,et al.  Feedback cooling of a nanomechanical resonator , 2003 .

[35]  H. Stoof,et al.  Ultracold Quantum Fields , 2009 .

[36]  Jason F. Ralph,et al.  Frequency tracking and parameter estimation for robust quantum state estimation , 2009, 0907.5034.

[37]  V. Belavkin THEORY OF THE CONTROL OF OBSERVABLE QUANTUM SYSTEMS , 2005 .

[38]  Stability of continuously pumped atom lasers. , 2001, Physical review letters.

[39]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[40]  Habib,et al.  Coherent states via decoherence. , 1993, Physical review letters.