Enumeration of convex polyominoes using the ECO method
暂无分享,去创建一个
[1] Jeffrey C. Lagarias,et al. Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.
[2] S. W. Golomb,et al. Checker Boards and Polyominoes , 1954 .
[3] Philippe Flajolet,et al. On Generating Functions of Generating Trees on Generating Functions of Generating Trees on Generating Functions of Generating Trees , 1999 .
[4] D. Kleitman,et al. Covering Regions by Rectangles , 1981 .
[5] Mireille Bousquet-Mélou,et al. Generating functions for generating trees , 2002, Discret. Math..
[6] Anthony J. Guttmann,et al. Enumeration of three-dimensional convex polygons , 1997 .
[7] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[8] Anthony J. Guttmann,et al. The number of convex polygons on the square and honeycomb lattices , 1988 .
[9] Neil J. A. Sloane,et al. The encyclopedia of integer sequences , 1995 .
[10] Alberto Del Lungo,et al. ECO:a methodology for the enumeration of combinatorial objects , 1999 .
[11] K. Lin,et al. Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .
[12] Danièle Beauquier,et al. On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..
[13] Mireille Bousquet-Mélou,et al. A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..
[14] Renzo Pinzani,et al. An algebraic characterization of the set of succession rules , 2002, Theor. Comput. Sci..