Enumeration of convex polyominoes using the ECO method

ECO is a method for the enumeration of classes of combinatorial objects based on recursive constructions of such classes. In the first part of this paper we present a construction for the class of convex polyominoes based on the ECO method. Then we translate this construction into a succession rule. The final goal of the paper is to determine the generating function of convex polyominoes according to the semi-perimeter, and it is achieved by applying an idea introduced in [11].

[1]  Jeffrey C. Lagarias,et al.  Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.

[2]  S. W. Golomb,et al.  Checker Boards and Polyominoes , 1954 .

[3]  Philippe Flajolet,et al.  On Generating Functions of Generating Trees on Generating Functions of Generating Trees on Generating Functions of Generating Trees , 1999 .

[4]  D. Kleitman,et al.  Covering Regions by Rectangles , 1981 .

[5]  Mireille Bousquet-Mélou,et al.  Generating functions for generating trees , 2002, Discret. Math..

[6]  Anthony J. Guttmann,et al.  Enumeration of three-dimensional convex polygons , 1997 .

[7]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[8]  Anthony J. Guttmann,et al.  The number of convex polygons on the square and honeycomb lattices , 1988 .

[9]  Neil J. A. Sloane,et al.  The encyclopedia of integer sequences , 1995 .

[10]  Alberto Del Lungo,et al.  ECO:a methodology for the enumeration of combinatorial objects , 1999 .

[11]  K. Lin,et al.  Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .

[12]  Danièle Beauquier,et al.  On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..

[13]  Mireille Bousquet-Mélou,et al.  A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..

[14]  Renzo Pinzani,et al.  An algebraic characterization of the set of succession rules , 2002, Theor. Comput. Sci..