Extended local Rytov Fourier migration method

We develop a novel depth‐migration method termed the extended local Rytov Fourier (ELRF) migration method. It is based on the scalar wave equation and a local application of the Rytov approximation within each extrapolation interval. Wavefields are Fourier transformed back and forth between the frequency‐space and frequency‐wavenumber domains during wavefield extrapolation. The lateral slowness variations are taken into account in the frequency‐space domain. The method is efficient due to the use of a fast Fourier transform algorithm. Under the small angle approximation, the ELRF method leads to the split‐step Fourier (SSF) method that is unconditionally stable. The ELRF method and the extended local Born Fourier (ELBF) method that we previously developed can handle wider propagation angles than the SSF method and account for the phase and amplitude changes due to the lateral variations of slowness, whereas the SSF method only accounts for the phase changes. The stability of the ELRF method is controlled ...

[1]  T. Zhu Ray-Kirchhoff migration in inhomogeneous media , 1988 .

[2]  Piero Sguazzero,et al.  Migration of seismic data by phase-shift plus interpolation: Geophysics , 1984 .

[3]  O. Holberg,et al.  TOWARDS OPTIMUM ONE‐WAY WAVE PROPAGATION1 , 1988 .

[4]  Christian Hanitzsch,et al.  Comparison of weights in prestack amplitude-preserving Kirchhoff depth migration , 1997 .

[5]  Fabio Rocca,et al.  SEG/EAEG 3-D modeling project: 2nd update , 1994 .

[6]  Jean Brac,et al.  Can we image complex structures with first‐arrival traveltime? , 1993 .

[7]  Lian-Jie Huang,et al.  Accuracy analysis of the split-step Fourier propagator: Implications for seismic modeling and migration , 1998, Bulletin of the Seismological Society of America.

[8]  Frequency‐wavenumber migration in laterally heterogeneous media , 1991 .

[9]  Ru-Shan Wu,et al.  Extended local Born Fourier migration method , 1999 .

[10]  Larry Lines,et al.  Implicit interpolation in reverse-time migration , 1997 .

[11]  Tong W. Fei,et al.  Elimination of numerical dispersion in finite-difference modeling and migration by flux-corrected transport , 1993 .

[12]  J. W. Wiggins Kirchhoff integral extrapolation and migration of nonplanar data , 1984 .

[13]  Irshad R. Mufti,et al.  Finite-difference depth migration of exploration-scale 3-D seismic data , 1996 .

[14]  S. Gray,et al.  Kirchhoff migration using eikonal equation traveltimes , 1994 .

[15]  D. Ristow,et al.  3-D implicit finite‐difference migration by multiway splitting , 1997 .

[16]  Marta Woodward,et al.  Wave-equation tomography , 1992 .

[17]  A. Devaney Geophysical Diffraction Tomography , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[18]  L. E. Larsen,et al.  Limitations of Imaging with First-Order Diffraction Tomography , 1984 .

[19]  Samuel H. Gray,et al.  Can we image beneath salt , 1996 .

[20]  M. Nafi Toksöz,et al.  Ultrasonic laboratory tests of geophysical tomographic reconstruction , 1988 .

[21]  D. Ristow,et al.  Fourier finite-difference migration , 1994 .

[22]  Wafik B. Beydoun,et al.  Paraxial ray Kirchhoff migration , 1988 .

[23]  M. Toksöz,et al.  Diffraction tomography and multisource holography applied to seismic imaging , 1987 .

[24]  Dimitri Bevc,et al.  Imaging complex structure with semirecursive Kirchhoff migration , 1997 .

[25]  T. Kunz,et al.  Three dimensional SEG/EAEG models; an update , 1996 .

[26]  C. Shin,et al.  A frequency‐space 2-D scalar wave extrapolator using extended 25-point finite‐difference operator , 1998 .

[27]  David Lumley,et al.  Imaging complex geologic structure with single‐arrival Kirchhoff prestack depth migration , 1997 .

[28]  George A. McMechan,et al.  3D ACOUSTIC PRESTACK REVERSE‐TIME MIGRATION1 , 1990 .

[29]  A. Devaney Inverse-scattering theory within the Rytov approximation. , 1981, Optics letters.

[30]  Paul L. Stoffa,et al.  Split-Step Fourier Migration , 1990 .

[31]  William A. Schneider,et al.  INTEGRAL FORMULATION FOR MIGRATION IN TWO AND THREE DIMENSIONS , 1978 .

[32]  T. J. Moser Migration using the shortest-path method , 1994 .

[33]  Dave Hale,et al.  3-D depth migration via McClellan transformations , 1990 .

[34]  Alexander M. Popovici Prestack migration by split‐step DSR , 1996 .