Spline collocation for fractional weakly singular integro-differential equations

We consider a class of boundary value problems for linear fractional weakly singular integro-differential equations which involve Caputo-type derivatives. Using an integral equation reformulation of the boundary value problem, we first study the regularity of the exact solution. Based on the obtained regularity properties and spline collocation techniques, the numerical solution of the boundary value problem by suitable non-polynomial approximations is discussed. Optimal global convergence estimates are derived and a super-convergence result for a special choice of grid and collocation parameters is given. A numerical illustration is also presented.

[1]  T F Nonnenmacher,et al.  A fractional calculus approach to self-similar protein dynamics. , 1995, Biophysical journal.

[2]  Neville J. Ford,et al.  High Order Numerical Methods for Fractional Terminal Value Problems , 2014, Comput. Methods Appl. Math..

[3]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[4]  Arvet Pedas,et al.  Numerical solution of nonlinear fractional differential equations by spline collocation methods , 2014, J. Comput. Appl. Math..

[5]  Arvet Pedas,et al.  On the convergence of spline collocation methods for solving fractional differential equations , 2011, J. Comput. Appl. Math..

[6]  Arvet Pedas,et al.  Spline collocation methods for linear multi-term fractional differential equations , 2011, J. Comput. Appl. Math..

[7]  Natalia Kopteva,et al.  An efficient collocation method for a Caputo two-point boundary value problem , 2015 .

[8]  P. Mokhtary,et al.  Reconstruction of exponentially rate of convergence to Legendre collocation solution of a class of fractional integro-differential equations , 2015, J. Comput. Appl. Math..

[9]  M. L. Morgado,et al.  Nonpolynomial collocation approximation of solutions to fractional differential equations , 2013 .

[10]  Jingjun Zhao,et al.  Collocation methods for fractional integro-differential equations with weakly singular kernels , 2013, Numerical Algorithms.

[11]  Arvet Pedas,et al.  Modified spline collocation for linear fractional differential equations , 2015, J. Comput. Appl. Math..

[12]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[13]  Hernán R. Henríquez,et al.  Asymptotically periodic solutions of fractional differential equations , 2014, Appl. Math. Comput..

[14]  E. A. Rawashdeh,et al.  Numerical solution of fractional integro-differential equations by collocation method , 2006, Appl. Math. Comput..

[15]  Bashir Ahmad,et al.  Some boundary value problems of fractional differential equations and inclusions , 2011, Comput. Math. Appl..

[16]  Arvet Pedas,et al.  Spline collocation for nonlinear fractional boundary value problems , 2014, Appl. Math. Comput..

[17]  N. Ford,et al.  Higher order numerical methods for solving fractional differential equations , 2014 .

[18]  Neville J. Ford,et al.  Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations , 2009 .

[19]  Neville J. Ford,et al.  Fractional boundary value problems: Analysis and numerical methods , 2011 .

[20]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[21]  Hermann Brunner,et al.  Piecewise Polynomial Collocation Methods for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels , 2001, SIAM J. Numer. Anal..

[22]  Gennadi Vainikko,et al.  Multidimensional Weakly Singular Integral Equations , 1993 .

[23]  Eid H. Doha,et al.  A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order , 2011, Comput. Math. Appl..

[24]  I. Podlubny Fractional differential equations , 1998 .

[25]  Arvet Pedas,et al.  Spline Collocation for Fractional Integro-Differential Equations , 2014, FDM.

[26]  M. Rehman,et al.  Three point boundary value problems for nonlinear fractional differential equations , 2011 .

[27]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[28]  Mehdi Dehghan,et al.  Application of the collocation method for solving nonlinear fractional integro-differential equations , 2014, J. Comput. Appl. Math..

[29]  Ali H. Bhrawy,et al.  A review of operational matrices and spectral techniques for fractional calculus , 2015 .

[30]  Xiaohua Ma,et al.  Numerical solution of fractional integro-differential equations by a hybrid collocation method , 2013, Appl. Math. Comput..

[31]  E. Tamme,et al.  Piecewise Polynomial Collocation for a Class of Fractional Integro-Differential Equations , 2015 .

[32]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[33]  Zhongli Wei,et al.  Existence of positive solutions for a boundary value problem of nonlinear fractional differential equations , 2015, Advances in Difference Equations.

[34]  R. Agarwal,et al.  A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions , 2010 .

[35]  Arvet Pedas,et al.  Piecewise polynomial collocation for linear boundary value problems of fractional differential equations , 2012, J. Comput. Appl. Math..

[36]  Chengming Huang,et al.  Spectral collocation method for linear fractional integro-differential equations , 2014 .

[37]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[38]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .