Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN

More than two decades of III-N materials research has led to the production of visible spectrum commercial light-emitting diodes (LEDs) and laser diodes (LDs). Commercial c-plane LEDs are currently limited by efficiency droop which describes the decline in efficiency with increasing input current density. Laser-based sources, however, provide peak efficiencies at much higher current densities and may circumvent efficiency droop limitations. The potential benefits of non-basal plane (NBP) orientations could accelerate the evolution of solid-state lighting from LED to LD sources. Here, we review the progress in long-wavelength (440–590 nm) NBP quantum well LD research and discuss applications in solid-state lighting, visible light communication and smart lighting.

[1]  Uwe Strauss,et al.  True green InGaN laser diodes , 2010 .

[2]  Steve Patterson,et al.  100-W+ diode laser bars show > 71% power conversion from 790- nm to 1000-nm and have clear route to > 85% , 2007, SPIE LASE.

[3]  J. Speck,et al.  Valence band states and polarized optical emission from nonpolar and semipolar III–nitride quantum well optoelectronic devices , 2014 .

[4]  H. Haas,et al.  A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride $\mu{\rm LED}$ , 2014, IEEE Photonics Technology Letters.

[5]  Koji Katayama,et al.  Continuous-Wave Operation of 520 nm Green InGaN-Based Laser Diodes on Semi-Polar {2021} GaN Substrates , 2009 .

[6]  S. Denbaars,et al.  High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes , 2010 .

[7]  James S. Speck,et al.  High-power blue laser diodes with indium tin oxide cladding on semipolar (202¯1¯) GaN substrates , 2015 .

[8]  Akito Kuramata,et al.  Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN , 1997 .

[9]  Jeffrey Y. Tsao,et al.  Comparison between blue lasers and light‐emitting diodes for future solid‐state lighting , 2013 .

[10]  S. Lutgen,et al.  8 W single‐emitter InGaN laser in pulsed operation , 2009 .

[11]  Takashi Miyoshi,et al.  510–515 nm InGaN-Based Green Laser Diodes on c-Plane GaN Substrate , 2009 .

[12]  Mathew C. Schmidt,et al.  Gain comparison in polar and nonpolarsemipolar gallium-nitride-based laser diodes , 2012 .

[13]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[14]  S. Denbaars,et al.  Suppression of m-plane and c-plane slip through Si and Mg doping in partially relaxed (202¯1) InGaN/GaN heterostructures , 2012 .

[15]  S. Denbaars,et al.  Low damage dry etch for III-nitride light emitters , 2015 .

[16]  S. Denbaars,et al.  Semipolar (202̄1) Single-Quantum-Well Red Light-Emitting Diodes with a Low Forward Voltage , 2013 .

[17]  Adrian Avramescu,et al.  InGaN laser diodes with 50 mW output power emitting at 515 nm , 2009 .

[18]  S. Denbaars,et al.  Stable vicinal step orientations in m-plane GaN , 2015 .

[19]  Nobuhiro Saga,et al.  Low Threshold Current Density InGaN Based 520–530 nm Green Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates , 2010 .

[20]  S. Denbaars,et al.  444.9 nm semipolar (112¯2) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer , 2012 .

[21]  Takashi Miyoshi,et al.  InGaN‐based 518 and 488 nm laser diodes on c‐plane GaN substrate , 2010 .

[22]  Motoaki Iwaya,et al.  Misfit Strain Relaxation by Stacking Fault Generation in InGaN Quantum Wells Grown on m-Plane GaN , 2009 .

[23]  James S. Speck,et al.  Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes , 2011 .

[24]  Jeffrey Y. Tsao,et al.  The potential of III‐nitride laser diodes for solid‐state lighting , 2014 .

[25]  Shuji Nakamura,et al.  Optical polarization characteristics of semipolar (3031) and (3031) InGaN/GaN light-emitting diodes. , 2013, Optics express.

[26]  James W. Raring,et al.  State-of-the-art continuous-wave InGaN laser diodes in the violet, blue, and green wavelength regimes , 2010, Defense + Commercial Sensing.

[27]  C. Colwell,et al.  Jet lag syndrome: circadian organization, pathophysiology, and management strategies , 2010, Nature and science of sleep.

[28]  Koji Katayama,et al.  InGaN-based true green laser diodes on novel semi-polar {202̄1} GaN substrates , 2010, 22nd IEEE International Semiconductor Laser Conference.

[29]  K. Fujito,et al.  Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrates by HVPE , 2009 .

[30]  Shuji Nakamura,et al.  Optical gain and carrier lifetime of InGaN multi‐quantum well structure laser diodes , 1996 .

[31]  K. Katayama,et al.  531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {202̄1} Free-Standing GaN Substrates , 2009 .

[32]  Shinichi Tanaka,et al.  High-power, low-efficiency-droop semipolar (202̄1̄) single-quantum-well blue light-emitting diodes , 2012 .

[33]  C. Zah,et al.  Development of semipolar laser diode , 2013 .

[34]  S. Denbaars,et al.  Misfit dislocation formation via pre-existing threading dislocation glide in (112¯2) semipolar heteroepitaxy , 2011 .

[35]  S. Denbaars,et al.  Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes , 2009 .

[36]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[37]  S. Denbaars,et al.  Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells , 2012 .

[38]  P. Bhattacharya,et al.  InGaN/GaN Quantum Dot Red $(\lambda=630~{\rm nm})$ Laser , 2013, IEEE Journal of Quantum Electronics.

[40]  S. Denbaars,et al.  Observation of non-basal slip in semipolar InxGa1-xN/GaN heterostructures , 2011 .

[41]  Takashi Miyoshi,et al.  Optical Gain Spectra of a (0001) InGaN Green Laser Diode , 2013 .

[42]  Masashi Kubota,et al.  Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm , 2009 .

[43]  Irving Chyr,et al.  >700W continuous-wave output power from single laser diode bar , 2007 .

[44]  E. Kioupakis,et al.  Auger recombination and free-carrier absorption in nitrides from first principles , 2010 .

[45]  Christoph Eichler,et al.  Beyond blue pico laser: development of high power blue and low power direct green , 2012, OPTO.

[46]  Rajaram Bhat,et al.  60 mW Pulsed and Continuous Wave Operation of GaN-Based Semipolar Green Laser with Characteristic Temperature of 190 K , 2011 .

[47]  S. Nakamura,et al.  High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures , 1995 .

[48]  Michel Krakowski,et al.  Optimization of the wall-plug efficiency of Al-free active region diode lasers at 975 nm , 2008, SPIE Photonics Europe.

[49]  James S. Speck,et al.  Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire , 2002 .

[50]  James S. Speck,et al.  High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy , 2011 .

[51]  A. David,et al.  Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis , 2010 .

[52]  K. Delaney,et al.  Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes , 2011 .

[53]  Jonathan J. Wierer,et al.  Four-color laser white illuminant demonstrating high color-rendering quality. , 2011, Optics express.

[54]  James S. Speck,et al.  Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes , 2013 .

[55]  L. Coldren,et al.  Electrically pumped distributed feedback nitride lasers employing embedded dielectric gratings , 1999 .

[56]  Hiroshi Nakajima,et al.  Long-Lifetime True Green Laser Diodes with Output Power over 50 mW above 525 nm Grown on Semipolar {2021} GaN Substrates , 2012 .

[57]  S. Lutgen,et al.  True Green Laser Diodes at 524 nm with 50 mW Continuous Wave Output Power on c-Plane GaN , 2010 .

[58]  S. Denbaars,et al.  Dependence of Electron Overflow on Emission Wavelength and Crystallographic Orientation in Single-Quantum-Well III–Nitride Light-Emitting Diodes , 2013 .

[59]  Shinichi Tanaka,et al.  High optical polarization ratio from semipolar (202¯1¯) blue-green InGaN/GaN light-emitting diodes , 2011 .

[60]  Tomomasa Watanabe,et al.  740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE , 2012 .

[61]  James S. Speck,et al.  High internal and external quantum efficiency InGaN/GaN solar cells , 2011 .

[62]  S. Denbaars,et al.  Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN , 2010 .

[63]  James S. Speck,et al.  AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes , 2007, 69th Device Research Conference.

[64]  Hirofumi Kan,et al.  Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode , 2008 .

[65]  David Sliney,et al.  Sensitivity of the Human Circadian System to Short-Wavelength (420-nm) Light , 2008, Journal of biological rhythms.

[66]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[67]  S. Denbaars,et al.  4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. , 2015, Optics express.

[68]  Pallab Bhattacharya,et al.  Small signal modulation characteristics of red-emitting (λ = 610 nm) III-nitride nanowire array lasers on (001) silicon , 2015 .

[69]  S. Denbaars,et al.  Emission characteristics of single InGaN quantum wells on misoriented nonpolar m-plane bulk GaN substrates , 2013 .

[70]  Takashi Miyoshi,et al.  Blue and green laser diodes for large laser display , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[71]  M. Dawson,et al.  Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array , 2012, Journal of Lightwave Technology.

[72]  Mathew C. Schmidt,et al.  High-Efficiency Blue and True-Green-Emitting Laser Diodes Based on Non-c-Plane Oriented GaN Substrates , 2010 .

[73]  Oliver Brandt,et al.  Growth of M-Plane GaN(11-00): A Way to Evade Electrical Polarization in Nitrides , 2000 .

[74]  Y. Taniyasu,et al.  An aluminium nitride light-emitting diode with a wavelength of 210 nanometres , 2006, Nature.

[75]  Daniel L. Becerra,et al.  Continuous-wave operation of a (20\bar{2}\bar{1}) InGaN laser diode with a photoelectrochemically etched current aperture , 2015 .

[76]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[77]  Mingming Tan,et al.  Visible light communications using a directly modulated 422 nm GaN laser diode. , 2013, Optics letters.

[78]  James S. Speck,et al.  True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy , 2013 .

[79]  S. Randel,et al.  Broadband Information Broadcasting Using LED-Based Interior Lighting , 2008, Journal of Lightwave Technology.

[80]  S. Denbaars,et al.  Comparison of InGaN/GaN light emitting diodes grown on m ‐plane and a ‐plane bulk GaN substrates , 2008 .

[81]  S. Denbaars,et al.  Stress relaxation and critical thickness for misfit dislocation formation in (101¯0) and (3031¯) InGaN/GaN heteroepitaxy , 2012 .

[82]  James W. Raring,et al.  High-power high-efficiency continuous-wave InGaN laser diodes in the violet, blue, and green wavelength regimes , 2010, OPTO.

[83]  Pallab Bhattacharya,et al.  Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. , 2014, Nano letters.

[84]  Jeffrey Y. Tsao,et al.  The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting] , 2014 .

[85]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[86]  Noble M. Johnson,et al.  InAlGaN optical emitters: laser diodes with non-epitaxial cladding layers and ultraviolet light-emitting diodes , 2011, OPTO.

[87]  S. Denbaars,et al.  AlGaN-Cladding Free Green Semipolar GaN Based Laser Diode with a Lasing Wavelength of 506.4 nm , 2009 .

[88]  C. Weisbuch,et al.  Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. , 2013, Physical review letters.

[89]  Michael R. Krames,et al.  Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes , 2008 .

[90]  S. Denbaars,et al.  Stacking faults and interface roughening in semipolar (202¯1¯) single InGaN quantum wells for long wavelength emission , 2014 .

[91]  M. Ikeda,et al.  High-Power (over 100 mW) Green Laser Diodes on Semipolar {2021} GaN Substrates Operating at Wavelengths beyond 530 nm , 2012 .

[92]  Daniel J. Myers,et al.  Electroluminescence characteristics of blue InGaN quantum wells on m-plane GaN “double miscut” substrates , 2015 .

[93]  Thiago Melo Analysis of Gain and Absorption Spectra of GaN-based Laser Diodes , 2012 .

[94]  S. Denbaars,et al.  Suppression of relaxation in (202¯1) InGaN/GaN laser diodes using limited area epitaxy , 2012 .

[95]  Isamu Akasaki,et al.  Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .

[96]  Takashi Mukai,et al.  Efficient radiative recombination from -oriented InxGa1-xN multiple quantum wells fabricated by the regrowth technique , 2004 .

[97]  P. Bhattacharya,et al.  A InGaN/GaN quantum dot green (λ=524 nm) laser , 2011 .

[98]  S. Nagahama,et al.  1 W A1InGaN based green laser diodes , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[99]  Volker Jungnickel,et al.  High-speed visible light communication systems , 2013, IEEE Communications Magazine.

[100]  S. Denbaars,et al.  Blue and aquamarine stress-relaxed semipolar (112¯2) laser diodes , 2013 .