A short review on computational issues arising in relativistic atomic and molecular physics

This paper is a short review of computational issues arising when trying to compute electronic wave functions in atoms or molecules containing heavy nuclei. In this case, relativistic effects can play an important role and ad hoc models have to be used. The basic operator of this theories is the Dirac operator, which unlike th Schrödinger operator, is unbounded both from below. This feature creates dificulties both at the theoretical and the computational levels. In this review we discuss some of these issues. A much detailed review about this topic can be found in [7] .

[1]  I. P. Grant,et al.  Conditions for convergence of variational solutions of Dirac's equation in a finite basis , 1982 .

[2]  S. N. Datta,et al.  The minimax technique in relativistic Hartree-Fock calculations , 1988 .

[3]  I. Grant Relativistic atomic structure calculations , 1979 .

[4]  Ingvar Lindgren,et al.  Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure , 1986 .

[5]  Lindgren,et al.  Comment on relativistic wave equations and negative-energy states. , 1986, Physical review. A, General physics.

[6]  J. Wood,et al.  Improved Pauli Hamiltonian for local-potential problems , 1978 .

[7]  D. Kolb,et al.  Minimax LCAO approach to the relativistic two-centre Coulomb problem and its finite element (FEM) spectrum , 2004 .

[8]  I. Grant Bertha — 4-Component Relativistic Molecular Quantum Mechanics , 2002 .

[9]  Bernd Thaller,et al.  The Dirac Equation , 1992 .

[10]  H. Quiney,et al.  Foundations of the Relativistic Theory of Atomic and Molecular Structure , 1988 .

[11]  Marvin H. Mittleman,et al.  Theory of relativistic effects on atoms: Configuration-space Hamiltonian , 1981 .

[12]  M. Barysz,et al.  Two-component methods of relativistic quantum chemistry: from the Douglas–Kroll approximation to the exact two-component formalism , 2001 .

[13]  P. Indelicato,et al.  PROJECTION OPERATORS IN THE MULTICON GURATION DIRAC-FOCK METHOD , 1993 .

[14]  D. Hegarty On the Dirac equation in the algebraic approximation , 1986 .

[15]  M. Kaupp,et al.  Resolution of identity Dirac-Kohn-Sham method using the large component only: Calculations of g-tensor and hyperfine tensor. , 2006, The Journal of chemical physics.

[16]  L. Foldy,et al.  On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit , 1950 .

[17]  W. E. Baylis,et al.  Stable variational calculations with the Dirac Hamiltonian , 1983 .

[18]  Richard E. Stanton,et al.  Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations , 1984 .

[19]  Johnson,et al.  Finite basis sets for the Dirac equation constructed from B splines. , 1988, Physical review. A, General physics.

[20]  Ph. Durand,et al.  Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory , 1986 .

[21]  P. Schwerdtfeger Relativistic electronic structure theory , 2002 .

[22]  D. Kolb,et al.  Two-spinor fully relativistic finite-element (FEM) solution of the two-center Coulomb problem , 2004 .

[23]  Talman Minimax principle for the Dirac equation. , 1986, Physical review letters.

[24]  Jean Dolbeault,et al.  On the eigenvalues of operators with gaps. Application to Dirac operators. , 2000, 2206.06327.

[25]  Jean Dolbeault,et al.  A variational method for relativistic computations in atomic and molecular physics , 2003 .

[26]  Bertha Swirles,et al.  The Relativistic Self-Consistent Field , 1935 .

[27]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[28]  J. G. Snijders,et al.  Solving the Dirac equation, using the large component only, in a Dirac-type Slater orbital basis set , 1995 .

[29]  P. Durand Transformation du hamiltonien de Dirac en hamiltoniens variationnels de type Pauli. Application des atomes hydrogénoïdes , 1986 .

[30]  W. Kutzelnigg Effective Hamiltonians for degenerate and quasidegenerate direct perturbation theory of relativistic effects , 1999 .

[31]  J. Dolbeault,et al.  Variational characterization for eigenvalues of Dirac operators , 2000 .

[32]  Eric Paturel Solutions of the Dirac-Fock Equations without Projector , 2000 .

[33]  Paul Indelicato,et al.  Computational approaches of relativistic models in quantum chemistry , 2003 .

[34]  I. P. Grant,et al.  Matrix representation of operator products , 1984 .

[35]  W. Schwarz,et al.  Basis set expansions of relativistic molecular wave equations , 1982 .

[36]  R. T. Lewis,et al.  A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potentials. , 1999, Documenta Mathematica.

[37]  J. Dolbeault,et al.  Minimization methods for the one-particle dirac equation. , 2000, Physical review letters.

[38]  G. Drake,et al.  Relativistic Sturmian and Finite Basis Set Methods in Atomic Physics , 1989 .

[39]  Werner Kutzelnigg,et al.  Quasirelativistic theory equivalent to fully relativistic theory. , 2005, The Journal of chemical physics.

[40]  Maria J. Esteban,et al.  Existence and multiplicity of solutions for linear and nonlinear Dirac problems , 1997 .

[41]  S. Wilson On the use of many-body perturbation theory and quantum-electrodynamics in molecular electronic structure theory☆ , 2001 .

[42]  Hill,et al.  A solution to the problem of variational collapse for the one-particle Dirac equation. , 1994, Physical review letters.

[43]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[44]  S. P. Goldman,et al.  Application of discrete-basis-set methods to the Dirac equation , 1981 .

[45]  M. Griesemer,et al.  A Minimax Principle for the Eigenvalues in Spectral Gaps , 1999 .

[46]  Werner Kutzelnigg,et al.  RELATIVISTIC ONE-ELECTRON HAMILTONIANS 'FOR ELECTRONS ONLY' AND THE VARIATIONAL TREATMENT OF THE DIRAC EQUATION , 1997 .

[47]  W. Kutzelnigg Basis set expansion of the dirac operator without variational collapse , 1984 .

[48]  D. Kolb,et al.  High accuracy Dirac-finite-element (FEM) calculations for H2+ and Th 2179 + , 2001 .

[49]  K. P. Lawley,et al.  Ab initio methods in quantum chemistry , 1987 .

[50]  Kimihiko Hirao,et al.  Relativistic electronic structure theory , 2002, J. Comput. Chem..

[51]  D. Kolb,et al.  Dirac finite element method calculations for Th2179 , 2003 .

[52]  W. Kutzelnigg,et al.  Use of the squared dirac operator in variational relativistic calculations , 1981 .

[53]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[54]  M. Esteban,et al.  Solutions of the Dirac–Fock Equations for Atoms¶and Molecules , 1999 .