Implementation of fuzzy modeling system for faults detection and diagnosis in three phase induction motor drive system

Abstract Induction motors have been intensively utilized in industrial applications, mainly due to their efficiency and reliability. It is necessary that these machines work all the time with its high performance and reliability. So it is necessary to monitor, detect and diagnose different faults that these motors are facing. In this paper an intelligent fault detection and diagnosis for different faults of induction motor drive system is introduced. The stator currents and the time are introduced as inputs to the proposed fuzzy detection and diagnosis system. The direct torque control technique (DTC) is adopted as a suitable control technique in the drive system especially, in traction applications, such as Electric Vehicles and Sub-Way Metro that used such a machine. An intelligent modeling technique is adopted as an identifier for different faults; the proposed model introduces the time as an important factor or variable that plays an important role either in fault detection or in decision making for suitable corrective action according to the type of the fault. Experimental results have been obtained to verify the efficiency of the proposed intelligent detector and identifier; a matching between the simulated and experimental results has been noticed.